Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842621

RESUMO

We found interactions between dopamine and oxidative damage in the striatum involved in advanced neurodegeneration, which probably change the microglial phenotype. We observed possible microglia dystrophy in the striatum of neurodegenerative brains. To investigate the interactions between oxidative damage and microglial phenotype, we quantified myeloperoxidase (MPO), poly (ADP-Ribose) (PAR), and triggering receptors expressed on myeloid cell 2 (TREM2) using enzyme-linked immunosorbent assay (ELISA). To test the correlations of microglia dystrophy and tauopathy, we quantified translocator protein (TSPO) and tau fibrils using autoradiography. We chose the caudate and putamen of Lewy body diseases (LBDs) (Parkinson's disease, Parkinson's disease dementia, and Dementia with Lewy body), Alzheimer's disease (AD), and control brains and genotyped for TSPO, TREM2, and bridging integrator 1 (BIN1) genes using single nucleotide polymorphisms (SNP) assays. TREM2 gene variants were absent across all samples. However, associations between TSPO and BIN1 gene polymorphisms and TSPO, MPO, TREM2, and PAR level variations were found. PAR levels reduced significantly in the caudate of LBDs. TSPO density and tau fibrils decreased remarkably in the striatum of LBDs but increased in AD. Oxidative damage, induced by misfolded tau proteins and dopamine metabolism, causes microglia dystrophy or senescence during the late stage of LBDs. Consequently, microglia dysfunction conversely reduces tau propagation. The G allele of the BIN1 gene is a potential risk factor for tauopathy.


Assuntos
Corpo Estriado/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/patologia , Tauopatias/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Corpo Estriado/patologia , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peroxidase/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Tauopatias/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/metabolismo
2.
Nat Aging ; 3(3): 346-365, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36993867

RESUMO

The commonalities and differences in cell-type-specific pathways that lead to Alzheimer disease (AD) and Parkinson disease (PD) remain unknown. Here, we performed a single-nucleus transcriptome comparison of control, AD and PD striata. We describe three astrocyte subpopulations shared across different brain regions and evolutionarily conserved between humans and mice. We reveal common features between AD and PD astrocytes and regional differences that contribute toward amyloid pathology and neurodegeneration. In contrast, we found that transcriptomic changes in microglia are largely unique to each disorder. Our analysis identified a population of activated microglia that shared molecular signatures with murine disease-associated microglia (DAM) as well as disease-associated and regional differences in microglia transcriptomic changes linking microglia to disease-specific amyloid pathology, tauopathy and neuronal death. Finally, we delineate undescribed subpopulations of medium spiny neurons (MSNs) in the striatum and provide neuronal transcriptomic profiles suggesting disease-specific changes and selective neuronal vulnerability.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Parkinson/genética , Transcriptoma/genética , Encéfalo/metabolismo , Microglia/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo
3.
Neural Regen Res ; 17(4): 867-874, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472487

RESUMO

Neurodegenerative diseases are a class of chronic and complex disorders featuring progressive loss of neurons in distinct brain areas. The mechanisms responsible for the disease progression in neurodegeneration are not fully illustrated. In this observational study, we have examined diverse biochemical parameters in the caudate and putamen of patients with Lewy body diseases (LBDs) and Alzheimer disease (AD), shedding some light on the involvement of oxidative damage and neuroinflammation in advanced neurodegeneration. We performed Spearman and Mantel-Cox analyses to investigate how oxidative stress and neuroinflammation exert comprehensive effects on disease progression and survival. Disease progression in LBDs correlated positively with poly (ADP-Ribose) and triggering receptors expressed on myeloid cell 2 levels in the striatum of LBD cohorts, indicating that potential parthanatos was a dominant feature of worsening disease progression and might contribute to switching microglial inflammatory phenotypes. Disease progression in AD corresponds negatively with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and myeloperoxidase concentrations in the striatum, suggesting that possible mitochondria dysfunction may be involved in the progression of AD via a mechanism of ß-amyloid entering the mitochondria and subsequent free radicals generation. Patients with lower striatal 8-oxo-dG and myeloperoxidase levels had a survival advantage in AD. The age of onset also affected disease progression. Tissue requests for the postmortem biochemistry, genetics, and autoradiography studies were approved by the Washington University Alzheimer's Disease Research Center (ADRC) Biospecimens Committee (ethics approval reference number: T1705, approval date: August 6, 2019). Recombinant DNA and Hazardous Research Materials were approved by the Washington University Environmental Health & Safety Biological Safety Committee (approval code: 3739, approval date: February 25, 2020). Radioactive Material Authorization was approved by the Washington University Environmental Health & Safety Radiation Safety Committee (approval code: 1056, approval date: September 18, 2019).

4.
Ann Clin Transl Neurol ; 8(1): 224-237, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348472

RESUMO

OBJECTIVE: Dopamine D2-like receptors - mainly dopamine D2 receptors (D2R) and dopamine D3 receptors (D3R) - are believed to be greatly involved in the pathology of Parkinson disease (PD) progression. However, these receptors have not been precisely examined in PD patients. Our aim was to quantitatively calculate the exact densities of dopamine D1 receptors (D1R), D2R, and D3R in control, Alzheimer disease (AD), and Lewy body disease (LBD) patients (including PD, Dementia with Lewy bodies, and Parkinson disease dementia); and analyze the relationship between dopamine receptors and clinical PD manifestations. METHODS: We analyzed the densities of D1R, D2R, and D3R in the striatum and substantia nigra (SN) using a novel quantitative autoradiography procedure previously developed by our group. We also examined the expression of D2R and D3R mRNA in the striatum by in situ hybridization. RESULTS: The results showed that although no differences of striatal D1R were found among all groups; D2R was significantly decreased in the striatum of PD patients when compared with control and AD patients. Some clinical manifestations: age of onset, PD stage, dopamine responsiveness, and survival time after onset; showed a better correlation with striatal D1R + D3R densities combined compared to D1R or D3R alone. INTERPRETATION: There is a possibility that we may infer the results in diagnosis, treatment, and prognosis of PD by detecting D1R + D3R as opposed to using dopamine D1 or D3 receptors alone. This is especially true for elderly patients with low D2R expression as is common in this disease.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autorradiografia/métodos , Encéfalo/patologia , Feminino , Humanos , Masculino , Doença de Parkinson/patologia
5.
Science ; 360(6386): 336-341, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674596

RESUMO

Mitofusins (MFNs) promote fusion-mediated mitochondrial content exchange and subcellular trafficking. Mutations in Mfn2 cause neurodegenerative Charcot-Marie-Tooth disease type 2A (CMT2A). We showed that MFN2 activity can be determined by Met376 and His380 interactions with Asp725 and Leu727 and controlled by PINK1 kinase-mediated phosphorylation of adjacent MFN2 Ser378 Small-molecule mimics of the peptide-peptide interface of MFN2 disrupted this interaction, allosterically activating MFN2 and promoting mitochondrial fusion. These first-in-class mitofusin agonists overcame dominant mitochondrial defects provoked in cultured neurons by CMT2A mutants MFN2 Arg94→Gln94 and MFN2 Thr105→Met105, as demonstrated by amelioration of mitochondrial dysmotility, fragmentation, depolarization, and clumping. A mitofusin agonist normalized axonal mitochondrial trafficking within sciatic nerves of MFN2 Thr105→Met105 mice, promising a therapeutic approach for CMT2A and other untreatable diseases of impaired neuronal mitochondrial dynamism and/or trafficking.


Assuntos
Doença de Charcot-Marie-Tooth/tratamento farmacológico , Desenho de Fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Proteínas Mitocondriais/agonistas , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Substituição de Aminoácidos , Animais , Arginina/genética , Axônios/efeitos dos fármacos , Axônios/fisiologia , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Glutamina/genética , Humanos , Metionina/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Fosforilação , Proteínas Quinases/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiopatologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa