RESUMO
Tumor-specific T cell receptor (TCR) gene transfer enables specific and potent immune targeting of tumor antigens. Due to the prevalence of the HLA-A2 MHC class I supertype in most human populations, the majority of TCR gene therapy trials targeting public antigens have employed HLA-A2-restricted TCRs, limiting this approach to those patients expressing this allele. For these patients, TCR gene therapy trials have resulted in both tantalizing successes and lethal adverse events, underscoring the need for careful selection of antigenic targets. Broad and safe application of public antigen-targeted TCR gene therapies will require (i) selecting public antigens that are highly tumor-specific and (ii) targeting multiple epitopes derived from these antigens by obtaining an assortment of TCRs restricted by multiple common MHC alleles. The canonical cancer-testis antigen, NY-ESO-1, is not expressed in normal tissues but is aberrantly expressed across a broad array of cancer types. It has also been targeted with A2-restricted TCR gene therapy without adverse events or notable side effects. To enable the targeting of NY-ESO-1 in a broader array of HLA haplotypes, we isolated TCRs specific for NY-ESO-1 epitopes presented by four MHC molecules: HLA-A2, -B07, -B18, and -C03. Using these TCRs, we pilot an approach to extend TCR gene therapies targeting NY-ESO-1 to patient populations beyond those expressing HLA-A2.
Assuntos
Proteínas de Homeodomínio/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/isolamento & purificação , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Clonagem Molecular , HumanosRESUMO
Inhibitor of apoptosis proteins (IAPs) are critical in regulating apoptosis resistance in cancer. Antagonists of IAPs, such as LCL161, are in clinical development and show promise as anti-cancer agents for solid and hematological cancers, with preliminary data suggesting they may act as immunomodulators. IAP antagonists hypersensitize tumor cells to TNF-α-mediated apoptosis, an effect that may work in synergy with that of cancer vaccines. This study aimed to further investigate the immunomodulatory properties of LCL161 on human immune subsets. T lymphocytes treated with LCL161 demonstrated significantly enhanced cytokine secretion upon activation, with little effect on CD4 and CD8 T-cell survival or proliferation. LCL161 treatment of peripheral blood mononuclear cells significantly enhanced priming of naïve T cells with synthetic peptides in vitro. Myeloid dendritic cells underwent phenotypic maturation upon IAP antagonism and demonstrated a reduced capacity to cross-present a tumor antigen-based vaccine. These effects are potentially mediated through an observed activation of the canonical and non-canonical NF-κB pathways, following IAP antagonism with a resulting upregulation of anti-apoptotic molecules. In conclusion, this study demonstrated the immunomodulatory properties of antagonists at physiologically relevant concentrations and indicates their combination with immunotherapy requires further investigation.
Assuntos
Antineoplásicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Tiazóis/farmacologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/farmacologia , Apoptose/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Células Cultivadas , Terapia Combinada , Citocinas/metabolismo , Células Dendríticas/imunologia , Humanos , Imunoterapia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , NF-kappa B/metabolismo , Peptídeos/farmacologia , Linfócitos T/imunologia , Regulação para Cima/efeitos dos fármacosRESUMO
The ability of dendritic cells (DCs) to cross-present protein tumor antigens to cytotoxic T lymphocytes (CTLs) underpins the success of therapeutic cancer vaccines. We studied cross-presentation of the cancer/testis antigen, NY-ESO-1, and the melanoma differentiation antigen, Melan-A by human DC subsets. Monocyte-derived DCs (MoDCs) efficiently cross-presented human leukocyte associated (HLA)-A2-restricted epitopes from either a formulated NY-ESO-1/ISCOMATRIX vaccine or when either antigen was mixed with ISCOMATRIX adjuvant. HLA-A2 epitope generation required endosomal acidification and was proteasome-independent for NY-ESO-1 and proteasome-dependent for Melan-A. Both MoDCs and CD1c(+) blood DCs cross-presented NY-ESO-1-specific HLA-A2(157-165)-, HLA-B7(60-72)-, and HLA-Cw3(92-100)-restricted epitopes when formulated as an NY-ESO-1/ISCOMATRIX vaccine, but this was limited when NY-ESO-1 and ISCOMATRIX adjuvant were added separately to the DC cultures. Finally, cross-presentation of NY-ESO-1(157-165)/HLA-A2, NY-ESO-1(60-72)/HLA-B7, and NY-ESO-1(92-100)/HLA-Cw3 epitopes was proteasome-dependent when formulated as immune complexes (ICs) but only proteasome-dependent for NY-ESO-1(60-72)/HLA-B7-restricted cross-presentation facilitated by ISCOMATRIX adjuvant. We demonstrate, for the first time, proteasome-dependent and independent cross-presentation of HLA-A-, B-, and C-restricted epitopes within the same full-length tumor antigen by human DCs. Our findings identify important differences in the capacities of human DC subsets to cross-present clinically relevant, full-length tumor antigens and how vaccine formulation impacts CTL responses in vivo.
Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas de Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Vacinas Anticâncer/imunologia , Colesterol/imunologia , Combinação de Medicamentos , Epitopos de Linfócito T/imunologia , Antígenos HLA-A/imunologia , Antígenos HLA-B/imunologia , Antígenos HLA-C/imunologia , Humanos , Ativação Linfocitária/imunologia , Antígeno MART-1 , Fosfolipídeos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Saponinas/imunologiaAssuntos
Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Testes Sorológicos/métodos , Tuberculose/diagnóstico , Adulto , Austrália , Proteínas de Bactérias/imunologia , Bulgária , Coinfecção/imunologia , Feminino , Infecções por HIV/imunologia , Humanos , Índia , Testes de Liberação de Interferon-gama/métodos , Itália , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , África do Sul , Tuberculose/imunologia , Adulto JovemRESUMO
The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions.
Assuntos
Antígenos de Neoplasias/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/sangue , Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Anticorpos Monoclonais/química , Antígenos de Neoplasias/química , Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Epitopos/química , Humanos , Interferon gama/metabolismo , Neoplasias Pulmonares/metabolismo , Modelos Genéticos , Peptídeos/químicaRESUMO
BACKGROUND: A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. METHODS: We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. RESULTS: Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. CONCLUSIONS: Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.
RESUMO
The Wilms' tumour 1 (WT1) molecule was screened in silico for the presence of 15-mer sequences predicted to bind HLA-DRB1(*)0401 (www.syfpeithi.de). Two peptides with the highest binding scores were synthesized (WT12e, PQQMGSDVRDLNALL and WT331, NKRYFKLSHLQMHSR). In vitro sensitization experiments using PBMC and the 15-mer peptides yielded peptide-specific responses against both WT12e and WT331 from six of seven healthy donors. Moreover, four of four different primary CML cell preparations were directly recognized by five different T cell lines, as assessed by IFN-gamma release. These responses were to a great extent blocked by anti-DR monoclonal antibody. These results suggest that WT1 peptides can be selected that are immunogenic for class II-restricted T-cell responses to native tumor cells, and indicate that they may find application in active immunotherapy of CML.
Assuntos
Antígenos de Neoplasias/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/imunologia , Fragmentos de Peptídeos/farmacologia , Linfócitos T/efeitos dos fármacos , Proteínas WT1/química , Adulto , Sequência de Aminoácidos , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/fisiologia , Comunicação Autócrina/efeitos dos fármacos , Citocinas/análise , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Antígeno HLA-A2/imunologia , Antígenos HLA-DR/imunologia , Cadeias HLA-DRB1 , Humanos , Interferon gama/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Ativação Linfocitária/efeitos dos fármacos , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas WT1/imunologia , Proteínas WT1/fisiologiaRESUMO
Combination therapy with BRAF and MEK inhibition is currently in clinical development for the treatment of BRAF-mutated malignant melanoma. BRAF inhibitors are associated with enhanced antigen-specific T-lymphocyte recognition in vivo. Consequently, BRAF inhibition has been proposed as proimmunogenic and there has been considerable enthusiasm for combining BRAF inhibition with immunotherapy. MEK inhibitors inhibit ERK phosphorylation regardless of BRAF mutational status and have been reported to impair T-lymphocyte and modulate dendritic cell function. In this study, we investigate the effects on isolated T lymphocytes and monocyte-derived dendritic cells (moDC) of a MEK (trametinib) and BRAF (dabrafenib) inhibitor combination currently being evaluated in a randomized controlled clinical trial. The effects of dabrafenib and trametinib, alone and in combination, were studied on isolated normal T lymphocytes and moDCs. Lymphocyte viability, together with functional assays including proliferation, cytokine production, and antigen-specific expansion, were assessed. MoDC phenotype in response to lipopolysaccharide stimulation was evaluated by flow cytometry, as were effects on antigen cross-presentation. Dabrafenib did not have an impact on T lymphocytes or moDCs, whereas trametinib alone or in combination with dabrafenib suppressed T-lymphocyte proliferation, cytokine production, and antigen-specific expansion. However, no significant decrease in CD4(+) or CD8(+) T-lymphocyte viability was observed following kinase inhibition. MoDC cross-presentation was suppressed in association with enhanced maturation following combined inhibition of MEK and BRAF. The results of this study demonstrate that MEK inhibition, alone or in combination with BRAF inhibition, can modulate immune cell function, and further studies in vivo will be required to evaluate the potential clinical impact of these findings.
Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Antígenos de Neoplasias/imunologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Apresentação Cruzada/imunologia , Citocinas/biossíntese , Células Dendríticas/citologia , Epitopos de Linfócito T/imunologia , Humanos , Imidazóis/farmacologia , Lipopolissacarídeos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Oximas/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologiaRESUMO
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8(+) T cell epitope, NY-ESO-1(88-96) (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1(157-165) epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1(88-96) is much more efficiently cross-presented from the soluble form, than NY-ESO-1(157-165). On the other hand, NY-ESO-1(157-165) is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A(26-35); whereas NY-ESO-1(88-96) was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1(88-96) is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18(+) melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1(88-96) from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8(+) T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Epitopos/imunologia , Antígeno HLA-B18/imunologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Melanoma/imunologia , Melanoma/patologiaRESUMO
Decades of preclinical evaluation and clinical trials into melanoma vaccines have yielded spectacular progress in our understanding of melanoma antigens and the immune mechanisms of tumor rejection. Key insights and the results of their clinical evaluation are reviewed in this article. Unfortunately, durable clinical benefit following vaccination remains uncommon. Two recent clinical advances that will impact on melanoma vaccine development are trials with inhibitors of CTLA-4 and oncogenic BRAF. Long-term therapeutic control of melanoma will require integration of specific active immunotherapy with these emerging successful therapies from the disparate fields of immune regulation and signal transduction.
Assuntos
Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Melanoma/imunologia , Melanoma/terapia , Antígenos CD/imunologia , Antígeno CTLA-4 , Ensaios Clínicos como Assunto , Humanos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/imunologia , Resultado do TratamentoRESUMO
The rigorous evaluation of cancer vaccination requires evidence of benefit to patients with cancer or those at risk of relapse from the disease. Clinical trials are expensive and require considerable human and clinical resources in order to demonstrate this benefit. In the era of defined cancer antigens, it is possible to evaluate immunogenic targets, and assess the quality and magnitude of immune responses against these antigens following vaccination. Analyzing these surrogate end points complements clinical assessment and provides a depth of understanding to better inform trial evaluation and design. We have used the immunogenic cancer testis antigen NY-ESO-1 as a model antigen. This article summarizes our experience in monitoring immunity against NY-ESO-1.
Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Proteínas de Membrana/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Interferon gama/biossíntese , Neoplasias/imunologia , Testes Cutâneos , Linfócitos T Reguladores/imunologiaRESUMO
Naturally occurring CD4(+)CD25(+) regulatory T (nTreg) cells are essential for maintaining T cell tolerance to self Ags. We show that discrimination of human Treg from effector CD4(+)CD25(+) non-nTreg cells and their selective survival and proliferation can now be achieved using rapamycin (sirolimus). Human purified CD4(+)CD25(high) T cell subsets stimulated via TCR and CD28 or by IL-2 survived and expanded up to 40-fold in the presence of 1 nM rapamycin, while CD4(+)CD25(low) or CD4(+)CD25(-) T cells did not. The expanding pure populations of CD4(+)CD25(high) T cells were resistant to rapamycin-accelerated apoptosis. In contrast, proliferation of CD4(+)CD25(-) T cells was blocked by rapamycin, which induced their apoptosis. The rapamycin-expanded CD4(+)CD25(high) T cell populations retained a broad TCR repertoire and, like CD4(+) CD25(+) T cells freshly obtained from the peripheral circulation, constitutively expressed CD25, Foxp3, CD62L, glucocorticoid-induced TNFR family related protein, CTLA-4, and CCR-7. The rapamycin-expanded T cells suppressed proliferation and effector functions of allogeneic or autologous CD4(+) and CD8(+) T cells in vitro. They equally suppressed Ag-specific and nonspecific responses. Our studies have defined ex vivo conditions for robust expansion of pure populations of human nTreg cells with potent suppressive activity. It is expected that the availability of this otherwise rare T cell subset for further studies will help define the molecular basis of Treg-mediated suppression in humans.
Assuntos
Técnicas de Cultura de Células , Interleucina-2/farmacologia , Sirolimo/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Anexina A5/metabolismo , Antígenos CD/análise , Antígenos CD/metabolismo , Antígenos de Diferenciação/análise , Antígenos de Diferenciação/metabolismo , Autoantígenos/imunologia , Antígenos CD4/análise , Antígeno CTLA-4 , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/análise , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/análise , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Selectina L/análise , Selectina L/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Receptores CCR7 , Receptores de Quimiocinas/análise , Receptores de Quimiocinas/metabolismo , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/imunologiaRESUMO
There remains a need to identify novel epitopes of potential tumour target antigens for use in immunotherapy of cancer. Here, several melanoma tissues and cell lines but not normal tissues were found to overexpress the cancer-testis antigen HAGE at the mRNA and protein level. We identified a HAGE-derived 15-mer peptide containing a shorter predicted MHC class I-binding sequence within a class II-binding sequence. However, only the longer peptide was found to be both endogenously processed and immunogenic for T cells in transgenic mice in vivo, as well as for human T cells in vitro. A different class I-binding peptide, not contained within a longer class II sequence, was subsequently found to be both immunogenic and endogenously processed in transgenic mice, as was a second class II epitope. These novel HAGE-derived epitopes may contribute to the range of immunotherapeutic targets for use in cancer vaccination programs.
Assuntos
Antígenos de Neoplasias/metabolismo , RNA Helicases DEAD-box/metabolismo , Imunoterapia/métodos , Melanoma/terapia , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Apresentação de Antígeno , Vacinas Anticâncer/química , Proliferação de Células , Células Dendríticas/citologia , Epitopos/química , Humanos , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Linfócitos T/metabolismoRESUMO
The melanocyte differentiation Ag RAB38/NY-MEL-1 was identified by serological expression cloning (SEREX) and is expressed in the vast majority of melanoma lesions. The immunogenicity of RAB38/NY-MEL-1 has been corroborated previously by the frequent occurrence of specific Ab responses in melanoma patients. To elucidate potential CD8 T cell responses, we applied in vitro sensitization with overlapping peptides spanning the RAB38/NY-MEL-1 protein sequence and the reverse immunology approach. The identified peptide RAB38/NY-MEL-1(50-58) exhibited a marked response in ELISPOT assays after in vitro sensitization of CD8 T cells from HLA-A *0201(+) melanoma patients. In vitro digestion assays using purified proteasomes provided evidence of natural processing of RAB38/NY-MEL-1(50-58) peptide. Accordingly, monoclonal RAB38/NY-MEL-1(50-58)-specific T cell populations were capable of specifically recognizing HLA-A2(+) melanoma cell lines expressing RAB38/NY-MEL-1. Applying fluorescent HLA-A2/RAB38/NY-MEL-1(50-58) multimeric constructs, we were able to document a spontaneously developed memory/effector CD8 T cell response against this peptide in a melanoma patient. To elucidate the Ag-processing pathway, we demonstrate that RAB38/NY-MEL-1(50-58) is produced efficiently by the standard proteasome and the immunoproteasome. In addition to the identification of a RAB38/NY-MEL-1-derived immunogenic CD8 T cell epitope, this study is instrumental for both the onset and monitoring of future RAB38/NY-MEL-1-based vaccination trials.
Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Apresentação de Antígeno/imunologia , Western Blotting , Células Cultivadas , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TransfecçãoRESUMO
The Wilms' tumour 1 (WT1) protein is over-expressed in several types of cancer including leukaemias and might therefore constitute a novel target for immunotherapy. Recently, human leucocyte antigen (HLA) class I-binding WT1 peptides have been identified and shown to stimulate CD8(+) T cells in vitro. For maximal CD8 cell efficacy, CD4(+) helper T cells responding to major histocompatibility complex (MHC) class II-binding epitopes are required. Here, we report that scanning the WT1 protein sequence using an evidence-based predictive computer algorithm (SYFPEITHI) yielded a peptide WT1(124-138) predicted to bind the HLA-DRB1*0401 molecule with high affinity. Moreover, synthetic WT1(124-138)-peptide-pulsed dendritic cells (DC), generated according to a protocol optimised in the present study, sensitised T cells in vitro to proliferate and secrete interferon-gamma (IFN-gamma) when rechallenged with specific peptide-pulsed DC, but not with peripheral blood mononuclear cells (PBMC). These results suggest that the WT1 protein may yield epitopes immunogenic to CD4 as well as CD8 T cells, and therefore constitute a novel potential target for specific immunotherapy.