Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Irrig Sci ; 40(4-5): 531-551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172252

RESUMO

Remote sensing estimation of evapotranspiration (ET) directly quantifies plant water consumption and provides essential information for irrigation scheduling, which is a pressing need for California vineyards as extreme droughts become more frequent. Many ET models take satellite-derived Leaf Area Index (LAI) as a major input, but how uncertainties of LAI estimations propagate to ET and the partitioning between evaporation and transpiration is poorly understood. Here we assessed six satellite-based LAI estimation approaches using Landsat and Sentinel-2 images against ground measurements from four vineyards in California and evaluated ET sensitivity to LAI in the thermal-based two-source energy balance (TSEB) model. We found that radiative transfer modeling-based approaches predicted low to medium LAI well, but they significantly underestimated high LAI in highly clumped vine canopies (RMSE ~ 0.97 to 1.27). Cubist regression models trained with ground LAI measurements from all vineyards achieved high accuracy (RMSE ~ 0.3 to 0.48), but these empirical models did not generalize well between sites. Red edge bands and the related vegetation index (VI) from the Sentinel-2 satellite contain complementary information of LAI to VIs based on near-infrared and red bands. TSEB ET was more sensitive to positive LAI biases than negative ones. Positive LAI errors of 50% resulted in up to 50% changes in ET, while negative biases of 50% in LAI caused less than 10% deviations in ET. However, even when ET changes were minimal, negative LAI errors of 50% led to up to a 40% reduction in modeled transpiration, as soil evaporation and plant transpiration responded to LAI change divergently. These findings call for careful consideration of satellite LAI uncertainties for ET modeling, especially for the partitioning of water loss between vine and soil or cover crop for effective vineyard irrigation management.

2.
Irrig Sci ; 40(4-5): 609-634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172250

RESUMO

Robust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors. This study investigates the efficacy of a data fusion method for combining information from multiple medium-resolution sensors toward generating high spatiotemporal resolution ET products for water management. TIR data from Landsat and ECOSTRESS (both at ~ 100-m native resolution), and VIIRS (375-m native) are sharpened to a common 30-m grid using surface reflectance data from the Harmonized Landsat-Sentinel dataset. Periodic 30-m ET retrievals from these combined thermal data sources are fused with daily retrievals from unsharpened VIIRS to generate daily, 30-m ET image timeseries. The accuracy of this mapping method is tested over several irrigated cropping systems in the Central Valley of California in comparison with flux tower observations, including measurements over irrigated vineyards collected in the GRAPEX campaign. Results demonstrate the operational value added by the augmented TIR sensor suite compared to Landsat alone, in terms of capturing daily ET variability and reduced latency for real-time applications. The method also provides means for incorporating new sources of imaging from future planned thermal missions, further improving our ability to map rapid changes in crop water use at field scales.

3.
Remote Sens Environ ; 251: 112055, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33814638

RESUMO

Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat SR data co-collected over various landscapes. This work evaluates DMS performance for sharpening ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST (~70 m native resolution) and Visible Infrared Imaging Radiometer Suite (VIIRS) LST (375 m) data using Harmonized Landsat and Sentinel-2 (HLS) SR data, providing the basis for generating 30-m LST data at a higher temporal frequency than afforded by Landsat alone. To account for the misalignment between ECOSTRESS/VIIRS and Landsat/HLS caused by errors in registration and orthorectification, we propose a modified version of the DMS approach that employs a relaxed box size for energy conservation (EC). Sharpening experiments were conducted over three study sites in California, and results were evaluated visually and quantitatively against LST data from unmanned aerial vehicles (UAV) flights and from Landsat 8. Over the three sites, the modified DMS technique showed improved sharpening accuracy over the standard DMS for both ECOSTRESS and VIIRS, suggesting the effectiveness of relaxing EC box in relieving misalignment-induced errors. To achieve reasonable accuracy while minimizing loss of spatial detail due to the EC box size increase, an optimal EC box size of 180-270 m was identified for ECOSTRESS and about 780 m for VIIRS data based on experiments from the three sites. Results from this work will facilitate the development of a prototype system that generates high spatiotemporal resolution LST products for improved agricultural water use monitoring by synthesizing multi-source remote sensing data.

4.
Remote Sens Environ ; 2392020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32095027

RESUMO

Efficient water use assessment and irrigation management is critical for the sustainability of irrigated agriculture, especially under changing climate conditions. Due to the impracticality of maintaining ground instrumentation over wide geographic areas, remote sensing and numerical model-based fine-scale mapping of soil water conditions have been applied for water resource applications at a range of spatial scales. Here, we present a prototype framework for integrating high-resolution thermal infrared (TIR) and synthetic aperture radar (SAR) remote sensing data into a soil-vegetation-atmosphere-transfer (SVAT) model with the aim of providing improved estimates of surface- and root-zone soil moisture that can support optimized irrigation management strategies. Specifically, remotely-sensed estimates of water stress (from TIR) and surface soil moisture retrievals (from SAR) are assimilated into a 30-m resolution SVAT model over a vineyard site in the Central Valley of California, U.S. The efficacy of our data assimilation algorithm is investigated via both the synthetic and real data experiments. Results demonstrate that a particle filtering approach is superior to an ensemble Kalman filter for handling the nonlinear relationship between model states and observations. In addition, biophysical conditions such as leaf area index are shown to impact the relationship between observations and states and must therefore be represented accurately in the assimilation model. Overall, both surface and root-zone soil moisture predicted via the SVAT model are enhanced through the assimilation of thermal and radar-based retrievals, suggesting the potential for improving irrigation management at the agricultural sub-field scale using a data assimilation strategy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa