Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hosp Infect ; 134: 89-96, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738992

RESUMO

Regulations for measures to protect against SARS-CoV-2 transmission vary widely around the world, with very strict regulations in Germany where respirators (filtering face piece FFP2 or comparable) are often mandatory. The efficiency of respirators, however, depends essentially on the tight facial fit avoiding the bypass of contaminated air via gaps between mask and wearer's face. The facial fit can be verified in a fit test. The aim of this review was to describe the quantitative fit test results depending on the respirator designs. A literature search revealed 29 suitable studies. Of all respirators with circumferential head straps, three-panel folded dome-shaped respirators showed the best fit (80.8% of 4625 fit tests passed), followed by rigid-dome-shaped respirators (72.4% of 8234 fit tests passed), duckbill-shaped respirators (31.6% of 2120 fit tests passed), and coffee-filter-shaped respirators (30.9% of 3392 fit tests passed). Respirators with ear loops showed very poor tight fit (3.6% of 222 fit tests passed). In four randomized control trials, single-use respirators were not shown to be superior to surgical masks for the prevention of laboratory-confirmed viral respiratory infections, even when adjusted with a fit test. Therefore, we consider the mandatory use of respirators to be disproportionate and not supported by evidence. Further evidence should be generated, in which scenarios respirators might provide an effective benefit as part of occupational health and safety. For situations with confirmed benefits, only high-quality disposable respirators with head straps or respiratory protective equipment of higher protective levels should be used.


Assuntos
COVID-19 , Exposição Ocupacional , Dispositivos de Proteção Respiratória , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Desenho de Equipamento , Máscaras , Ventiladores Mecânicos , Exposição Ocupacional/prevenção & controle
2.
J Hosp Infect ; 140: 72-78, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543180

RESUMO

BACKGROUND: The efficacy of ultraviolet C (UV-C) radiation against a broad spectrum of micro-organisms has been demonstrated in several studies, but differences in the specific doses and the extent of microbial reduction were found. Furthermore, the conditions of laboratory tests differ greatly from reality, such that efficacy achieved in tests may not necessarily be assumed in reality. Consequently, it is important to investigate the effectiveness of UV-C in representative field trials. The aim was therefore to develop and establish a field test to evaluate automatic UV-C in comparison to manual disinfection. METHODS: Before and after disinfection, samples were repeatedly collected from naturally highly contaminated surfaces using the swab technique to obtain representative data sets for disinfected and non-disinfected surfaces. Subsequently, the log reduction values (LRV) and the disinfection success were evaluated for UV-C radiation and full compliant manual disinfection using alcohol-based wipes. RESULTS: Surfaces that are naturally contaminated with bacteria on a regular and nearly uniform basis have been identified as particularly suitable for field testing. Mean contamination was reduced from 23.3 to 1.98 cfu/cm2 (LRV 0.9) and 29.7 to 0.26 cfu/cm2 (LRV 1.2) for UV-C and manual disinfection, respectively. UV-C disinfection achieved 75.5% successful disinfected surfaces, whereas manual disinfection showed 98.1%. CONCLUSIONS: Full compliant manual disinfection showed slightly higher LRVs and disinfection success than automatic UV-C disinfection. Successful, operator-independent UV-C disinfection still has the potential to improve disinfection performance in addition to manual disinfection.


Assuntos
Bactérias , Desinfecção , Humanos , Desinfecção/métodos , Raios Ultravioleta
3.
Antimicrob Resist Infect Control ; 12(1): 63, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403134

RESUMO

BACKGROUND: Admission to a room previously occupied by patients carrying environmentally robust pathogens implies an increased risk of acquiring those pathogens. Therefore, 'No-touch' automated room disinfection systems, including devices based on UV-C irradiation, are discussed to improve terminal cleaning. It is still unclear if clinical isolates of relevant pathogens behave differently under UV-C irradiation compared to laboratory strains used in the approval process of disinfection procedures. In this study we analysed the susceptibility of well characterized clonally divergent vancomycin-resistant enterococci (VRE) strains, including a linezolid-resistant isolate, against UV-C radiation. METHODS: Susceptibility against UV-C of ten clonally divergent clinical isolates of VRE was determined in comparison to the commonly used test organism Enterococcus hirae ATCC 10541. Ceramic tiles contaminated with 105 to 106 colony forming units/25 cm² of the different enterococci were positioned at a distance of 1.0 and 1.5 m and irradiated for 20 s, resulting in a UV-C dose of 50 and 22 mJ/cm², respectively. Reduction factors were calculated after quantitative culture of the bacteria recovered from treated and untreated surfaces. RESULTS: Susceptibility to UV-C varied considerably among the strains studied, with the mean value of the most robust strain being up to a power of ten lower compared to the most sensitive strain at both UV-C doses. The two most tolerant strains belonged to MLST sequence types ST80 and ST1283. The susceptibility of the laboratory strain E. hirae ATCC 10541 ranged between the most sensitive and most tolerant isolates for both irradiation doses. However, for UV-C dose of 22 mJ/cm², the reduction of the most tolerant isolate of ST1283 was statistically significantly lower compared to E. hirae ATCC 10541. The most susceptible strains belonged to the MLST sequence types ST117 and ST203. CONCLUSIONS: These results indicate that UV-C doses reported in the literature are sufficient for the reduction of commonly used reference strains of enterococci but could be insufficient for the reduction of tolerant patient VRE-isolates in a hospital setting. Therefore, for future studies, the most tolerant clinical isolates should be used to validate automated UV-C devices or longer exposure times should be expected to ensure efficacy in the real world.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Enterococos Resistentes à Vancomicina/genética , Enterococcus faecium/genética , Vancomicina/uso terapêutico , Tipagem de Sequências Multilocus , Infecções por Bactérias Gram-Positivas/microbiologia
4.
J Hosp Infect ; 134: 1-6, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758903

RESUMO

BACKGROUND: Various assay methods have been developed to study antimicrobial activity based on contamination of surfaces with different amounts of liquid bacterial suspensions. Since surfaces with frequent hand contact are typically touched in a dry state in clinical settings, these tests may be inappropriate at assessing effectiveness to reduce pathogen transmission. AIM: To investigate a surface previously confirmed to display antimicrobial activity even after drying of small volumes of bacterial suspension (Egger antimicrobial surfaces: EAS) under conditions modelling dry contamination using a touch-transfer method. METHODS: EAS, an antimicrobial copper alloy, as well as a negative control were examined to assess interlaboratory test reproducibility. FINDINGS: Significantly fewer bacteria on EAS after touch transfer and some differences in the touch transmission were detected between the two laboratories. However, an identical assessment of effectiveness for EAS came from both laboratories. Interestingly, despite previously detected antimicrobial efficacy of EAS and the antimicrobial copper alloy after liquid contamination, insufficient activity was observed under dry conditions during a contact time of 4 h by both laboratories. Experiments under standardized air humidity in one laboratory revealed at least for copper a strong influence of humidity on antimicrobial activity. These data indicate that procedures involving contamination of surfaces with organisms suspended in liquids are not directly comparable to dry contamination. CONCLUSION: Since, in the real world of a hospital, organisms are typically transferred between dry surfaces, further standardization of the touch-transfer method is worthwhile for a better understanding of the efficacy of such surfaces.


Assuntos
Anti-Infecciosos , Tato , Humanos , Cobre/farmacologia , Reprodutibilidade dos Testes , Anti-Infecciosos/farmacologia , Bactérias , Ligas/farmacologia
5.
J Hosp Infect ; 112: 108-113, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864891

RESUMO

BACKGROUND: The presence of coronaviruses on surfaces in the patient environment is a potential source of indirect transmission. Manual cleaning and disinfection measures do not always achieve sufficient removal of surface contamination. This increases the importance of automated solutions in the context of final disinfection of rooms in the hospital setting. Ozone is a highly effective disinfectant which, combined with high humidity, is an effective agent against respiratory viruses. Current devices allow continuous nebulization for high room humidity as well as ozone production without any consumables. AIM: In the following study, the effectiveness of a fully automatic room decontamination system based on ozone was tested against bacteriophage Φ6 (phi 6) and bovine coronavirus L9, as surrogate viruses for the pandemic coronavirus SARS-CoV-2. METHODS: For this purpose, various surfaces (ceramic tile, stainless steel surface and furniture board) were soiled with the surrogate viruses and placed at two different levels in a gas-tight test room. After using the automatic decontamination device according to the manufacturer's instructions, the surrogate viruses were recovered from the surfaces and examined by quantitative cultures. Then, reduction factors were calculated. FINDINGS: The ozone-based room decontamination device achieved virucidal efficacy (reduction factor >4 log10) against both surrogate organisms regardless of the different surfaces and positions confirming a high activity under the used conditions. CONCLUSION: Ozone is highly active against SARS-CoV-2 surrogate organisms. Further investigations are necessary for a safe application and efficacy in practice as well as integration into routine processes.


Assuntos
Automação/instrumentação , COVID-19/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/instrumentação , Desinfecção/métodos , Ozônio/farmacologia , Animais , Bacteriófagos/efeitos dos fármacos , COVID-19/transmissão , Bovinos , Coronavirus Bovino/efeitos dos fármacos , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/virologia , Descontaminação/instrumentação , Descontaminação/métodos , Equipamentos e Provisões Hospitalares/virologia , Hospitais , Humanos , SARS-CoV-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa