Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2316032121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451945

RESUMO

Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C-F, C-Cl, C-S, and C-N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy.

2.
Acc Chem Res ; 57(13): 1827-1838, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905487

RESUMO

ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as H2O and CO2 into higher energy products in the form of carbohydrates and O2. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic N-centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C ß-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective in situ protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.

3.
Proc Natl Acad Sci U S A ; 119(43): e2212114119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252025

RESUMO

Quantum mechanics revolutionized chemists' understanding of molecular structure. In contrast, the kinetics of molecular reactions in solution are well described by classical, statistical theories. To reveal how the dynamics of chemical systems transition from quantum to classical, we study femtosecond proton transfer in a symmetric molecule with two identical reactant sites that are spatially apart. With the reaction launched from a superposition of two local basis states, we hypothesize that the ensuing motions of the electrons and nuclei will proceed, conceptually, in lockstep as a superposition of probability amplitudes until decoherence collapses the system to a product. Using ultrafast spectroscopy, we observe that the initial superposition state affects the reaction kinetics by an interference mechanism. With the aid of a quantum dynamics model, we propose how the evolution of nuclear wavepackets manifests the unusual intersite quantum correlations during the reaction.


Assuntos
Elétrons , Prótons , Cinética , Estrutura Molecular , Física , Teoria Quântica
4.
Chem Rev ; 122(2): 2017-2291, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34813277

RESUMO

We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.


Assuntos
Elétrons , Prótons , Técnicas de Química Sintética , Transporte de Elétrons , Oxirredução
5.
J Am Chem Soc ; 145(21): 11537-11543, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192535

RESUMO

Here, we report a diagnostic framework for elucidating the mechanisms of photoredox-based hydrogen isotope exchange (HIE) reactions based on hydrogen/deuterium (H/D) fractionation. Traditional thermal HIE methods generally proceed by reversible bond cleavage and bond reformation steps that share a common transition state. However, bond cleavage and bond reformation in light-driven HIE reactions can proceed via multiple, non-degenerate sets of elementary steps, complicating both mechanistic analysis and attendant optimization efforts. Building on classical treatments of equilibrium isotope effects, the fractionation method presented here extracts information regarding the nature of the key bond-forming and bond-breaking steps by comparing the extent of deuterium incorporation into an exchangeable C-H bond in the substrate relative to the H/D isotopic ratio of a solvent reservoir. We show that the extent of fractionation is sensitive to the mechanism of the exchange process and provides a means to distinguish between degenerate and non-degenerate mechanisms for isotopic exchange. In model systems, the mechanisms implied by the fractionation method align with those predicted by thermochemical considerations. We then employed the method to study HIE reactions whose mechanisms are ambiguous on thermodynamic grounds.

6.
J Am Chem Soc ; 145(40): 21738-21744, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37787499

RESUMO

We report a light-driven method for the intermolecular anti-Markovnikov hydroamination of alkenes with primary heteroaryl amines. In this protocol, electron transfer between an amine substrate and an excited-state iridium photocatalyst affords an aminium radical cation (ARC) intermediate that undergoes C-N bond formation with a nucleophilic alkene. Integral to reaction success is the electronic character of the amine, wherein increasingly electron-deficient heteroaryl amines generate increasingly reactive ARCs. Counteranion-dependent reactivity is observed, and iridium triflate photocatalysts are employed in place of conventional iridium hexafluorophosphate complexes. This method exhibits broad functional group tolerance across 55 examples of N-alkylated products derived from pharmaceutically relevant heteroaryl amines.

7.
J Am Chem Soc ; 145(20): 11151-11160, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167410

RESUMO

Epoxy thermosets are high-volume materials that play a central role in a wide range of engineering applications; however, technologies to recycle these polymers remain rare. Here, we present a catalytic, light-driven method that enables chemical recycling of industrially relevant thiol epoxy thermosets to their original monomer at ambient temperature. This strategy relies on the proton-coupled electron transfer (PCET) activation of hydroxy groups within the polymer network to generate key alkoxy radicals that promote the fragmentation of the polymer through C-C bond ß-scission. The method fully depolymerizes insoluble thiol epoxy thermosets into well-defined mixtures of small-molecule products, which can collectively be converted into the original monomer via a one-step dealkylation process. Notably, this process is selective and efficient even in the presence of other commodity plastics and additives commonly found in commercial applications. These results constitute an important step toward making epoxy thermosets recyclable and more generally exemplify the potential of PCET to offer a more sustainable end-of-life for a diverse array of commercial plastics.

8.
J Am Chem Soc ; 145(23): 12499-12508, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260100

RESUMO

One-electron reduced photosensitizers have been invoked as crucial intermediates in photoredox catalysis, including multiphoton excitation and electrophotocatalytic processes. However, such reduced chromophores have been less investigated, limiting mechanistic studies of their associated electron transfer processes. Here, we report a total of 11 different examples of isolable singly reduced iridium chromophores. Chemical reduction of a cyclometalated iridium complex with potassium graphite affords a 19-electron species. Structural and spectroscopic characterizations reveal a ligand-centered reduction product. The reduced chromophore absorbs a wide range of light from ultraviolet to near-infrared and exhibits photoinduced bimolecular electron transfer reactivity. These studies shed light on elusive reduced iridium chromophores in both ground and excited states, providing opportunities to investigate a commonly invoked intermediate in photoredox catalysis.

9.
J Am Chem Soc ; 145(29): 16118-16129, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432783

RESUMO

We report a highly enantioselective radical-based hydroamination of enol esters with sulfonamides jointly catalyzed by an Ir photocatalyst, Brønsted base, and tetrapeptide thiol. This method is demonstrated for the formation of 23 protected ß-amino-alcohol products, achieving selectivities up to 97:3 er. The stereochemistry of the product is set through selective hydrogen atom transfer from the chiral thiol catalyst to a prochiral C-centered radical. Structure-selectivity relationships derived from structural variation of both the peptide catalyst and olefin substrate provide key insights into the development of an optimal catalyst. Experimental and computational mechanistic studies indicate that hydrogen-bonding, π-π stacking, and London dispersion interactions are contributing factors for substrate recognition and enantioinduction. These findings further the development of radical-based asymmetric catalysis and contribute to the understanding of the noncovalent interactions relevant to such transformations.

10.
J Am Chem Soc ; 144(1): 137-144, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968043

RESUMO

A light-driven method for the contra-thermodynamic positional isomerization of olefins is described. In this work, stepwise PCET activation of a more substituted and more thermodynamically stable olefin substrate is mediated by an excited-state oxidant and a Brønsted base to afford an allylic radical that is captured by a Cr(II) cocatalyst to furnish an allylchromium(III) intermediate. In situ protodemetalation of this allylchromium complex by methanol is highly regioselective and affords an isomerized and less thermodynamically stable alkene product. The higher oxidation potential of the less substituted olefin isomer renders it inert to further oxidation by the excited-state oxidant, enabling it to accumulate in solution over the course of the reaction. A broad range of isopropylidene substrates are accommodated, including enol ethers, enamides, styrenes, 1,3-dienes, and tetrasubstituted alkyl olefins. Mechanistic investigations of the protodemetalation step are also presented.

11.
J Am Chem Soc ; 144(34): 15488-15496, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35994332

RESUMO

A case study of catalytic carbon-carbon σ-bond homolysis is presented. The coordination of a redox-active Lewis acid catalyst reduces the bond-dissociation free energies of adjacent carbon-carbon σ-bonds, and this complexation-induced bond-weakening is used to effect reversible carbon-carbon bond homolysis. Stereochemical isomerization of 1,2-disubstituted cyclopropanes was investigated as a model reaction with a ruthenium (III/II) redox couple adopted for bond weakening. Results from our mechanistic investigation into the stereospecificity of the isomerization reaction are consistent with selective complexation-induced carbon-carbon bond homolysis. The ΔG‡ of catalyzed and uncatalyzed reactions were estimated to be 14.4 and 40.0 kcal/mol, respectively with the computational method, (U)PBE0-D3/def2-TZVPP-SMD(toluene)//(U)B3LYP-D3/def2-SVP. We report this work as the first catalytic example where the complexation-induced bond-weakening effect is quantified through transition state analysis.


Assuntos
Carbono , Rutênio , Carbono/química , Catálise
12.
J Am Chem Soc ; 144(47): 21783-21790, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395367

RESUMO

While heteroatom-centered radicals are understood to be highly electrophilic, their ability to serve as transient electron-withdrawing groups and facilitate polar reactions at distal sites has not been extensively developed. Here, we report a new strategy for the electronic activation of halophenols, wherein generation of a phenoxyl radical via formal homolysis of the aryl O-H bond enables direct nucleophilic aromatic substitution of the halide with carboxylate nucleophiles under mild conditions. Pulse radiolysis and transient absorption studies reveal that the neutral oxygen radical (O•) is indeed an extraordinarily strong electron-withdrawing group [σp-(O•) = 2.79 vs σp-(NO2) = 1.27]. Additional mechanistic and computational studies indicate that the key phenoxyl intermediate serves as an open-shell electron-withdrawing group in these reactions, lowering the barrier for nucleophilic substitution by more than 20 kcal/mol relative to the closed-shell phenol form of the substrate. By using radicals as transient activating groups, this homolysis-enabled electronic activation strategy provides a powerful platform to expand the scope of nucleophile-electrophile couplings and enable previously challenging transformations.


Assuntos
Eletrônica , Elétrons , Ácidos Carboxílicos , Fenol , Espécies Reativas de Oxigênio
13.
J Am Chem Soc ; 144(41): 18948-18958, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197450

RESUMO

Noncovalent interactions (NCIs) are critical elements of molecular recognition in a wide variety of chemical contexts. While NCIs have been studied extensively for closed-shell molecules and ions, very little is understood about the structures and properties of NCIs involving free radical intermediates. In this report, we describe a detailed mechanistic study of the enantioselective radical hydroamination of alkenes with sulfonamides and present evidence suggesting that the basis for asymmetric induction in this process arises from attractive NCIs between a neutral sulfonamidyl radical intermediate and a chiral phosphoric acid (CPA). We describe experimental, computational, and data science-based evidence that identifies the specific radical NCIs that form the basis for the enantioselectivity. Kinetic studies support that C-N bond formation determines the enantioselectivity. Density functional theory investigations revealed the importance of both strong H-bonding between the CPA and the N-centered radical and a network of aryl-based NCIs that serve to stabilize the favored diastereomeric transition state. The contributions of these specific aryl-based NCIs to the selectivity were further confirmed through multivariate linear regression analysis by comparing the measured enantioselectivity to computed descriptors. These results highlight the power of NCIs to enable high levels of enantioselectivity in reactions involving uncharged open-shell intermediates and expand our understanding of radical-molecule interactions.


Assuntos
Alcenos , Sulfonamidas , Alcenos/química , Estereoisomerismo , Catálise , Cinética , Radicais Livres/química , Íons
14.
Nature ; 539(7628): 268-271, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27732585

RESUMO

Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.


Assuntos
Carbono/química , Transporte de Elétrons , Hidrogênio/química , Prótons , Alcenos/química , Alquilação/efeitos da radiação , Amidas/química , Aminação , Catálise/efeitos da radiação , Irídio/química , Nitrogênio/química , Oxirredução
15.
J Am Chem Soc ; 143(27): 10232-10242, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191486

RESUMO

The reaction mechanism and the origin of the selectivity for the photocatalytic intermolecular anti-Markovnikov hydroamination of unactivated alkenes with primary amines to furnish secondary amines have been revealed by time-resolved laser kinetics measurements of the key reaction intermediates. We show that back-electron transfer (BET) between the photogenerated aminium radical cation (ARC) and reduced photocatalyst complex (Ir(II)) is nearly absent due to rapid deprotonation of the ARC on the sub-100 ns time scale. The selectivity for primary amine alkylation is derived from the faster addition of the primary ARCs (as compared to secondary ARCs) to alkenes. The turnover of the photocatalyst occurs via the reaction between Ir(II) and a thiyl radical; the in situ formation of an off-cycle disulfide from thiyl radicals suppresses this turnover, diminishing the efficiency of the reaction. With these detailed mechanistic insights, the turnover of the photocatalyst has been optimized, resulting in a >10-fold improvement in the quantum yield. These improvements enabled the development of a scalable flow protocol, demonstrating a potential strategy for practical applications with improved energy efficiency and cost-effectiveness.


Assuntos
Aminas/química , Processos Fotoquímicos , Aminação , Catálise , Estrutura Molecular , Oxirredução
16.
J Am Chem Soc ; 143(31): 12268-12277, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333967

RESUMO

The accumulation of persistent plastic waste in the environment is widely recognized as an ecological crisis. New chemical technologies are necessary both to recycle existing plastic waste streams into high-value chemical feedstocks and to develop next-generation materials that are degradable by design. Here, we report a catalytic methodology for the depolymerization of a commercial phenoxy resin and high molecular weight hydroxylated polyolefin derivatives upon visible light irradiation near ambient temperature. Proton-coupled electron transfer (PCET) activation of hydroxyl groups periodically spaced along the polymer backbone furnishes reactive alkoxy radicals that promote chain fragmentation through C-C bond ß-scission. The depolymerization produces well-defined and isolable product mixtures that are readily diversified to polycondensation monomers. In addition to controlling depolymerization, the hydroxyl group modulates the thermomechanical properties of these polyolefin derivatives, yielding materials with diverse properties. These results demonstrate a new approach to polymer recycling based on light-driven C-C bond cleavage that has the potential to establish new links within a circular polymer economy and influence the development of new degradable-by-design polyolefin materials.

17.
J Am Chem Soc ; 143(33): 13034-13043, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378919

RESUMO

Upon photoinitiated electron transfer, charge recombination limits the quantum yield of photoredox reactions for which the rates for the forward reaction and back electron transfer are competitive. Taking inspiration from a proton-coupled electron transfer (PCET) process in Photosystem II, a benzimidazole-phenol (BIP) has been covalently attached to the 2,2'-bipyridyl ligand of [Ir(dF(CF3)ppy)2(bpy)][PF6] (dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine; bpy = 2,2'-bipyridyl). Excitation of the [Ir(dF(CF3)ppy)2(BIP-bpy)][PF6] photocatalyst results in intramolecular PCET to form a charge-separated state with oxidized BIP. Subsequent reduction of methyl viologen dication (MV2+), a substrate surrogate, by the reducing moiety of the charge separated species demonstrates that the inclusion of BIP significantly slows the charge recombination rate. The effect of ∼24-fold slower charge recombination in a photocatalytic phthalimide ester reduction resulted in a greater than 2-fold increase in reaction quantum efficiency.

18.
J Am Chem Soc ; 143(10): 4055-4063, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33666086

RESUMO

This paper describes an intermolecular cross-selective [2 + 2] photocycloaddition reaction of exocyclic arylidene oxetanes, azetidines, and cyclobutanes with simple electron-deficient alkenes. The reaction takes place under mild conditions using a commercially available Ir(III) photosensitizer upon blue light irradiation. This transformation provides access to a range of polysubstituted 2-oxaspiro[3.3]heptane, 2-azaspiro[3.3]heptane, and spiro[3.3]heptane motifs, which are of prime interest in medicinal chemistry as gem-dimethyl and carbonyl bioisosteres. A variety of further transformations of the initial cycloadducts are demonstrated to highlight the versatility of the products and enable selective access to either of a syn- or an anti-diastereoisomer through kinetic or thermodynamic epimerization, respectively. Mechanistic experiments and DFT calculations suggest that this reaction proceeds through a sensitized energy transfer pathway.

19.
Angew Chem Int Ed Engl ; 60(37): 20190-20195, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34159700

RESUMO

A method is described for the isomerization of acyclic allylic alcohols into ß-functionalized ketones via 1,3-alkyl transposition. This reaction proceeds via light-driven proton-coupled electron transfer (PCET) activation of the O-H bond in the allylic alcohol substrate, followed by C-C ß-scission of the resulting alkoxy radical. The transient alkyl radical and enone acceptor generated in the scission event subsequently recombine via radical conjugate addition to deliver ß-functionalized ketone products. A variety of allylic alcohol substrates bearing alkyl and acyl migratory groups were successfully accommodated. Insights from mechanistic studies led to a modified reaction protocol that improves reaction performance for challenging substrates.


Assuntos
Propanóis/metabolismo , Prótons , Transporte de Elétrons , Estrutura Molecular , Propanóis/química
20.
J Am Chem Soc ; 142(13): 5974-5979, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182054

RESUMO

An enantioselective, radical-based method for the intramolecular hydroamination of alkenes with sulfonamides is reported. These reactions are proposed to proceed via N-centered radicals formed by proton-coupled electron transfer (PCET) activation of sulfonamide N-H bonds. Noncovalent interactions between the neutral sulfonamidyl radical and a chiral phosphoric acid generated in the PCET event are hypothesized to serve as the basis for asymmetric induction in a subsequent C-N bond forming step, achieving selectivities of up to 98:2 er. These results offer further support for the ability of noncovalent interactions to enforce stereoselectivity in reactions of transient and highly reactive open-shell intermediates.


Assuntos
Alcenos/química , Sulfonamidas/química , Aminação , Transporte de Elétrons , Elétrons , Prótons , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa