Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Appl Clin Med Phys ; 25(4): e14242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178622

RESUMO

PURPOSE: High-quality CBCT and AI-enhanced adaptive planning techniques allow CBCT-guided stereotactic adaptive radiotherapy (CT-STAR) to account for inter-fractional anatomic changes. Studies of intra-fractional respiratory motion management with a surface imaging solution for CT-STAR have not been fully conducted. We investigated intra-fractional motion management in breath-hold Ethos-based CT-STAR and CT-SBRT (stereotactic body non-adaptive radiotherapy) using optical surface imaging combined with onboard CBCTs. METHODS: Ten cancer patients with mobile lower lung or upper abdominal malignancies participated in an IRB-approved clinical trial (Phase I) of optical surface image-guided Ethos CT-STAR/SBRT. In the clinical trial, a pre-configured gating window (± 2 mm in AP direction) on optical surface imaging was used for manually triggering intra-fractional CBCT acquisition and treatment beam irradiation during breath-hold (seven patients for the end of exhalation and three patients for the end of inhalation). Two inter-fractional CBCTs at the ends of exhalation and inhalation in each fraction were acquired to verify the primary direction and range of the tumor/imaging-surrogate (donut-shaped fiducial) motion. Intra-fractional CBCTs were used to quantify the residual motion of the tumor/imaging-surrogate within the pre-configured breath-hold window in the AP direction. Fifty fractions of Ethos RT were delivered under surface image-guidance: Thirty-two fractions with CT-STAR (adaptive RT) and 18 fractions with CT-SBRT (non-adaptive RT). The residual motion of the tumor was quantified by determining variations in the tumor centroid position. The dosimetric impact on target coverage was calculated based on the residual motion. RESULTS: We used 46 fractions for the analysis of intra-fractional residual motion and 43 fractions for the inter-fractional motion analysis due to study constraints. Using the image registration method, 43 pairs of inter-fractional CBCTs and 100 intra-fractional CBCTs attached to dose maps were analyzed. In the motion range study (image registration) from the inter-fractional CBCTs, the primary motion (mean ± std) was 16.6 ± 9.2 mm in the SI direction (magnitude: 26.4 ± 11.3 mm) for the tumors and 15.5 ± 7.3 mm in the AP direction (magnitude: 20.4 ± 7.0 mm) for the imaging-surrogate, respectively. The residual motion of the tumor (image registration) from intra-fractional breath-hold CBCTs was 2.2 ± 2.0 mm for SI, 1.4 ± 1.4 mm for RL, and 1.3 ± 1.3 mm for AP directions (magnitude: 3.5 ± 2.1 mm). The ratio of the actual dose coverage to 99%, 90%, and 50% of the target volume decreased by 0.95 ± 0.11, 0.96 ± 0.10, 0.99 ± 0.05, respectively. The mean percentage of the target volume covered by the prescribed dose decreased by 2.8 ± 4.4%. CONCLUSION: We demonstrated the intra-fractional motion-managed treatment strategy in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT. While the controlled residual tumor motion measured at 3.5 mm exceeded the predetermined setup value of 2 mm, it is important to note that this motion still fell within the clinically acceptable range defined by the PTV margin of 5 mm. Nonetheless, additional caution is needed with intra-fractional motion management in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Suspensão da Respiração , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos de Viabilidade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
2.
J Appl Clin Med Phys ; 24(3): e13837, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36347220

RESUMO

PURPOSE: Determine the dosimetric quality and the planning time reduction when utilizing a template-based automated planning application. METHODS: A software application integrated through the treatment planning system application programing interface, QuickPlan, was developed to facilitate automated planning using configurable templates for contouring, knowledge-based planning structure matching, field design, and algorithm settings. Validations are performed at various levels of the planning procedure and assist in the evaluation of readiness of the CT image, structure set, and plan layout for automated planning. QuickPlan is evaluated dosimetrically against 22 hippocampal-avoidance whole brain radiotherapy patients. The required times to treatment plan generation are compared for the validations set as well as 10 prospective patients whose plans have been automated by QuickPlan. RESULTS: The generations of 22 automated treatment plans are compared against a manual replanning using an identical process, resulting in dosimetric differences of minor clinical significance. The target dose to 2% volume and homogeneity index result in significantly decreased values for automated plans, whereas other dose metric evaluations are nonsignificant. The time to generate the treatment plans is reduced for all automated plans with a median difference of 9' 50″ ± 4' 33″. CONCLUSIONS: Template-based automated planning allows for reduced treatment planning time with consistent optimization structure creation, treatment field creation, plan optimization, and dose calculation with similar dosimetric quality. This process has potential expansion to numerous disease sites.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Software
3.
J Appl Clin Med Phys ; 23(3): e13452, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166011

RESUMO

Secondary external dose calculations for a 0.35 T magnetic resonance image-guided radiation therapy (MRgRT) are needed within the radiation oncology community to follow safety standards set forth within the field. We evaluate the commercially available software, RadCalc, in its ability to accurately perform monitor unit dose calculations within a magnetic field. We also evaluate the potential effects of a 0.35 T magnetic field upon point dose calculations. Monitor unit calculations were evaluated with (wMag) and without (noMag) a magnetic field considerations in RadCalc for the ViewRay MRIdian. The magnetic field is indirectly accounted for by using asymmetric profiles for calculation. The introduction of double-stacked multi-leaf collimator leaves was also included in the monitor unit calculations and a single transmission value was determined. A suite of simple and complex geometries with a variety field arrangements were calculated for each method to demonstrate the effect of the 0.35 T magnetic field on monitor unit calculations. Finally, 25 patient-specific treatment plans were calculated using each method for comparison. All simple geometries calculated in RadCalc were within 2% of treatment planning system (TPS) values for both methods, except for a single noMag off-axis comparison. All complex muilt-leaf collimator (MLC) pattern calculations were within 5%. All complex phantom geometry calculations were within 5% except for a single field within a lung phantom at a distal point. For the patient calculations, the noMag method average percentage difference was 0.09 ± 2.5% and the wMag average percentage difference was 0.08 ± 2.5%. All results were within 5% for the wMag method. We performed monitor unit calculations for a 0.35 T MRgRT system using a commercially available secondary monitor unit dose calculation software and demonstrated minimal impact of the 0.35 T magnetic field on monitor unit dose calculations. This is the first investigation demonstrating successful calculations of dose using RadCalc in the low-field 0.35 T ViewRay MRIdian system.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Software
4.
J Appl Clin Med Phys ; 23(7): e13650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35615991

RESUMO

PURPOSE: Since 4D-MRI is inadequate to capture dynamic respiratory variations, real-time cinematographic (cine) MRI is actively used in MR-guided radiotherapy (MRgRT) for tumor motion evaluation, delineation, and tracking. However, most radiotherapy imaging platforms do not support the format of cine MRI from clinical MRI systems. This study developed an institutional solution of clinical cine MRI for tumor motion evaluation in radiotherapy applications. METHODS: Cine MRI manipulation software (called Cine Viewer) was developed within a commercial Treatment Planning System (TPS). It consists of (1) single/orthogonal viewers, (2) display controllers, (3) measurement grids/markers, and (4) manual contouring tools. RESULTS: The institutional solution of clinical cine MRI incorporated with radiotherapy application was assessed through case presentations (liver cancer). Cine Viewer loaded cine MRIs from 1.5T Philips Ingenia MRI, handling MRI DICOM format. The measurement grids and markers were used to quantify the displacement of anatomical structures in addition to the tumor. The contouring tool was utilized to localize the tumor and surrogates on the designated frame. The stacks of the contours were exhibited to present the ranges of tumor and surrogate motions. For example, the stacks of the tumor contours from case-1 were used to determine the ranges of tumor motions (∼8.17 mm on the x-direction [AP-direction] and ∼14 mm on the y-direction [SI-direction]). In addition, the patterns of the displacement of the contours over frames were analyzed and reported using in-house software. In the case-1 review, the tumor was displaced from +146.0 mm on the x-direction and +125.0 mm on the y-direction from the ROI of the abdominal surface. CONCLUSION: We demonstrated the institutional solution of clinical cine MRI in radiotherapy. The proposed tools can streamline the utilization of cine MRI for tumor motion evaluation using Eclipse for treatment planning.


Assuntos
Neoplasias Hepáticas , Imagem Cinética por Ressonância Magnética , Humanos , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Movimento (Física) , Respiração
5.
J Appl Clin Med Phys ; 23(1): e13441, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697865

RESUMO

PURPOSE: Ethos adaptive radiotherapy (ART) is emerging with AI-enhanced adaptive planning and high-quality cone-beam computed tomography (CBCT). Although a respiratory motion management solution is critical for reducing motion artifacts on abdominothoracic CBCT and improving tumor motion control during beam delivery, our institutional Ethos system has not incorporated a commercial solution. Here we developed an institutional visually guided respiratory motion management system to coach patients in regular breathing or breath hold during intrafractional CBCT scans and beam delivery with Ethos ART. METHODS: The institutional visual-guidance respiratory motion management system has three components: (1) a respiratory motion detection system, (2) an in-room display system, and (3) a respiratory motion trace management software. Each component has been developed and implemented in the clinical Ethos ART workflow. The applicability of the solution was demonstrated in installation, routine QA, and clinical workflow. RESULTS: An air pressure sensor has been utilized to detect patient respiratory motion in real time. Either a commercial or in-house software handled respiratory motion trace display, collection and visualization for operators, and visual guidance for patients. An extended screen and a projector on an adjustable stand were installed as the in-room visual guidance solution for the closed-bore ring gantry medical linear accelerator utilized by Ethos. Consistent respiratory motion traces and organ positions on intrafractional CBCTs demonstrated the clinical suitability of the proposed solution in Ethos ART. CONCLUSION: The study demonstrated the utilization of an institutional visually guided respiratory motion management system for Ethos ART. The proposed solution can be easily applied for Ethos ART and adapted for use with any closed bore-type system, such as computed tomography and magnetic resonance imaging, through incorporation with appropriate respiratory motion sensors.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada de Feixe Cônico , Humanos , Movimento (Física) , Respiração
6.
J Appl Clin Med Phys ; 22(1): 59-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300664

RESUMO

PURPOSE: The annual quality assurance (QA) of Leksell Gamma Knife® (LGK) systems are typically performed using films. Film is a good candidate for small field dosimetry due to its high spatial resolution and availability. However, there are multiple challenges with using film; film does not provide real-time measurement and requires batch-specific calibration. Our findings show that active detector-based QA can simplify the procedure and save time without loss of accuracy. METHODS: Annual QA tests for a LGK Icon™ system were performed using both film-based and filmless techniques. Output calibration, relative output factors (ROF), radiation profiles, sector uniformity/source counting, and verification of the unit center point (UCP) and radiation focal point (RFP) coincidence tests were performed. Radiochromic films, two ionization chambers, and a synthetic diamond detector were used for the measurements. Results were compared and verified with the treatment planning system (TPS). RESULTS: The measured dose rate of the LGK Icon was within 0.4% of the TPS value set at the time of commissioning using an ionization chamber. ROF for the 8 and 4-mm collimators were found to be 0.3% and 1.8% different from TPS values using the MicroDiamond detector and 2.6% and 1.9% different for film, respectively. Excellent agreement was found between TPS and measured dose profiles using the MicroDiamond detector which was within 1%/1 mm vs 2%/1 mm for film. Sector uniformity was found to be within 1% for all eight sectors measured using an ionization chamber. Verification of UCP and RFP coincidence using the MicroDiamond detector and pinprick film test was within 0.3 mm at isocenter for both. CONCLUSION: The annual QA of a LGK Icon was successfully performed by employing filmless techniques. Comparable results were obtained using radiochromic films. Utilizing active detectors instead of films simplifies the QA process and saves time without loss of accuracy.


Assuntos
Radiocirurgia , Calibragem , Diamante , Dosimetria Fotográfica , Humanos , Radiometria
7.
J Appl Clin Med Phys ; 22(6): 26-34, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036736

RESUMO

PURPOSE: Linear accelerator quality assurance (QA) in radiation therapy is a time consuming but fundamental part of ensuring the performance characteristics of radiation delivering machines. The goal of this work is to develop an automated and standardized QA plan generation and analysis system in the Oncology Information System (OIS) to streamline the QA process. METHODS: Automating the QA process includes two software components: the AutoQA Builder to generate daily, monthly, quarterly, and miscellaneous periodic linear accelerator QA plans within the Treatment Planning System (TPS) and the AutoQA Analysis to analyze images collected on the Electronic Portal Imaging Device (EPID) allowing for a rapid analysis of the acquired QA images. To verify the results of the automated QA analysis, results were compared to the current standard for QA assessment for the jaw junction, light-radiation coincidence, picket fence, and volumetric modulated arc therapy (VMAT) QA plans across three linacs and over a 6-month period. RESULTS: The AutoQA Builder application has been utilized clinically 322 times to create QA patients, construct phantom images, and deploy common periodic QA tests across multiple institutions, linear accelerators, and physicists. Comparing the AutoQA Analysis results with our current institutional QA standard the mean difference of the ratio of intensity values within the field-matched junction and ball-bearing position detection was 0.012 ± 0.053 (P = 0.159) and is 0.011 ± 0.224 mm (P = 0.355), respectively. Analysis of VMAT QA plans resulted in a maximum percentage difference of 0.3%. CONCLUSION: The automated creation and analysis of quality assurance plans using multiple APIs can be of immediate benefit to linear accelerator quality assurance efficiency and standardization. QA plan creation can be done without following tedious procedures through API assistance, and analysis can be performed inside of the clinical OIS in an automated fashion.


Assuntos
Aceleradores de Partículas , Radioterapia de Intensidade Modulada , Automação , Humanos , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software
8.
Circulation ; 139(3): 313-321, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586734

RESUMO

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS: We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.


Assuntos
Potenciais de Ação , Técnicas Eletrofisiológicas Cardíacas , Ventrículos do Coração/efeitos da radiação , Ablação por Radiofrequência/métodos , Radiocirurgia/métodos , Taquicardia Ventricular/radioterapia , Complexos Ventriculares Prematuros/radioterapia , Idoso , Idoso de 80 Anos ou mais , Antiarrítmicos/uso terapêutico , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Missouri , Valor Preditivo dos Testes , Estudos Prospectivos , Qualidade de Vida , Ablação por Radiofrequência/efeitos adversos , Radiocirurgia/efeitos adversos , Recidiva , Fatores de Risco , Inquéritos e Questionários , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/fisiopatologia
9.
J Appl Clin Med Phys ; 21(11): 295-303, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33098369

RESUMO

PURPOSE: Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments require a high degree of accuracy. Mechanical, imaging, and radiation isocenter coincidence is especially important. As a common method, the Winston-Lutz (WL) test plays an important role. However, weekly or daily WL test can be very time consuming. We developed novel methods using Portal Dosimetry Scripting Application Programming Interface (PDSAPI) to facilitate the test as well as documentation. METHODS: Winston-Lutz PDSAPI was developed and tested on our routine weekly WL imaging. The results were compared against two commercially available software RIT (Radiological Imaging Technology, Colorado Springs, CO) and DoseLab (Varian Medical Systems, Inc. Palo Alto, CA). Two manual methods that served as ground truth were used to verify PDSAPI results. Twenty WL test image data sets (10 fields per tests, and 200 images in total) were analyzed by these five methods in this report. RESULTS: More than 99.5% of WL PDSAPI 1D shifts agreed with each of four other methods within ±0.33 mm, which is roughly the pixel width of a-Si 1200 portal imager when source to imager distance (SID) is at 100 cm. 1D shifts agreement for ±0.22 mm and 0.11 mm were 96% and 63%, respectively. Same trend was observed for 2D displacement. CONCLUSIONS: Winston-Lutz PDSAPI delivers similar accuracy as two commercial applications for WL test. This new application can save time spent transferring data and has the potential to implement daily WL test with reasonable test time. It also provides the data storage capability, and enables easy access to imaging and shift data.


Assuntos
Aceleradores de Partículas , Radiocirurgia , Cerâmica , Humanos , Imagens de Fantasmas , Radiometria , Software
10.
J Appl Clin Med Phys ; 21(8): 200-207, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32614511

RESUMO

PURPOSE: To develop an efficient and automated methodology for beam data validation for a preconfigured ring gantry linear accelerator using scripting and a one-dimensional (1D) tank with automated couch motions. MATERIALS AND METHODS: Using an application programming interface, a program was developed to allow the user to choose a set of beam data to validate with measurement. Once selected the program generates a set of instructions for radiation delivery with synchronized couch motions for the linear accelerator in the form of an extensible markup language (XML) file to be delivered on the ring gantry linear accelerator. The user then delivers these beams while measuring with the 1D tank and data logging electrometer. The program also automatically calculates this set of beams on the measurement geometry within the treatment planning system (TPS) and extracts the corresponding calculated dosimetric data for comparison to measurement. Once completed the program then returns a comparison of the measurement to the predicted result from the TPS to the user and prints a report. In this work lateral, longitudinal, and diagonal profiles were taken for fields sizes of 6 × 6, 8 × 8, 10 × 10, 20 × 20, and 28 × 28 cm2 at depths of 1.3, 5, 10, 20, and 30 cm. Depth dose profiles were taken for all field sizes. RESULTS: Using this methodology, the TPS was validated to agree with measurement. All compared points yielded a gamma value less than 1 for a 1.5%/1.5 mm criteria (100% passing rate). Off axis profiles had >98.5% of data points producing a gamma value <1 with a 1%/1 mm criteria. All depth profiles produced 100% of data points with a gamma value <1 with a 1%/1 mm criteria. All data points measured were within 1.5% or 2 mm distance to agreement. CONCLUSIONS: This methodology allows for an increase in automation in the beam data validation process. Leveraging the application program interface allows the user to use a single system to create the measurement files, predict the result, and then compare to actual measurement increasing efficiency and reducing the chance for user input errors.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica
11.
J Appl Clin Med Phys ; 21(1): 95-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31943756

RESUMO

Current available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.0.3) and a secondary dose calculation was conducted. The agreement between the new calculations and the TPS were recorded and compared to the original secondary dose calculation agreement with the TPS using a Wilcoxon Signed Rank Test. Further comparisons using a Mann-Whitney test were made for targets treated at a 90° gamma angle against those treated with either a 70 or 110 gamma angle for both the new and commercial secondary dose calculation systems. Correlations between dose deviations from the treatment planning system against average target depth were evaluated using a Kendall's Tau correlation test for both programs. The Wilcoxon Signed Rank Test indicated a significant difference in the agreement between the two secondary calculations and the TPS, with a P-value < 0.0001. With respect to patients treated at nonstandard gamma angles, the new software was largely independent of patient setup, while the commercial software showed a significant dependence (P-value < 0.0001). The new secondary dose calculation software showed a moderate correlation with calculation depth, while the commercial software showed a weak correlation (Tau = -.322 and Tau = -.217 respectively). Overall, the new secondary software has better agreement with the TPS than the commercially available secondary calculation software over a range of diverse treatment geometries.


Assuntos
Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Cranianas/cirurgia , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias Cranianas/diagnóstico por imagem , Neoplasias Cranianas/patologia , Tomografia Computadorizada por Raios X/métodos
12.
J Appl Clin Med Phys ; 20(5): 21-26, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31055877

RESUMO

PURPOSE: Characterize the intra-fraction motion management (IFMM) system found on the Gamma Knife Icon (GKI), including spatial accuracy, latency, temporal performance, and overall effect on delivered dose. METHODS: A phantom was constructed, consisting of a three-axis translation mount, a remote motorized flipper, and a thermoplastic sphere surrounding a radiation detector. An infrared marker was placed on the translation mount secured to the flipper. The spatial accuracy of the IFMM was measured via the translation mount in all Cartesian planes. The detector was centered at the radiation focal point. A remote signal was used to move the marker out of the IFMM tolerance and pause the beam. A two-channel electrometer was used to record the signals from the detector and the flipper when motion was signaled. These signals determined the latency and temporal performance of the GKI. RESULTS: The spatial accuracy of the IFMM was found to be <0.1 mm. The measured latency was <200 ms. The dose difference with five interruptions was <0.5%. CONCLUSION: This work provides a quantitative characterization of the GKI IFMM system as required by the Nuclear Regulatory Commission. This provides a methodology for GKI users to satisfy these requirements using common laboratory equipment in lieu of a commercial solution.


Assuntos
Movimento , Neoplasias/cirurgia , Imagens de Fantasmas , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Desenho de Equipamento , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
13.
J Appl Clin Med Phys ; 19(6): 60-67, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30188009

RESUMO

This work shows the feasibility of collecting linear accelerator beam data using just a 1-D water tank and automated couch movements with the goal to maximize the cost effectiveness in resource-limited clinical settings. Two commissioning datasets were acquired: (a) using a standard of practice 3D water tank scanning system (3DS) and (b) using a novel technique to translate a commercial TG-51 complaint 1D water tank via automated couch movements (1DS). The Extensible Markup Language (XML) was used to dynamically move the linear accelerator couch position (and thus the 1D tank) during radiation delivery for the acquisition of inline, crossline, and diagonal profiles. Both the 1DS and 3DS datasets were used to generate beam models (BM1 DS and BM3 DS ) in a commercial treatment planning system (TPS). 98.7% of 1DS measured points had a gamma value (2%/2 mm) < 1 when compared with the 3DS. Static jaw defined field and dynamic MLC field dose distribution comparisons for the TPS beam models BM1 DS and BM3 DS had 3D gamma values (2%/2 mm) < 1 for all 24,900,000 data points tested and >99.5% pass rate with gamma value (1%/1 mm) < 1. In conclusion, automated couch motions and a 1D scanning tank were used to collect commissioning beam data with accuracy comparable to traditionally acquired data using a 3D scanning system. TPS beam models generated directly from 1DS measured data were clinically equivalent to a model derived from 3DS data.


Assuntos
Coleta de Dados/métodos , Movimento , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Automação , Humanos , Modelos Biológicos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
14.
J Appl Clin Med Phys ; 17(2): 24-40, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074470

RESUMO

The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry-mounted, single-room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C-inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons.


Assuntos
Neoplasias/radioterapia , Posicionamento do Paciente , Imagens de Fantasmas , Terapia com Prótons/instrumentação , Terapia com Prótons/normas , Prótons , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Rotação , Tomografia Computadorizada por Raios X
17.
Artigo em Inglês | MEDLINE | ID: mdl-38580083

RESUMO

PURPOSE: We aimed to demonstrate the clinical feasibility and safety of simulation-free hippocampal avoidance whole brain radiation therapy (HA-WBRT) in a pilot study (National Clinical Trial 05096286). METHODS AND MATERIALS: Ten HA-WBRT candidates were enrolled for treatment on a commercially available computed tomography (CT)-guided linear accelerator with online adaptive capabilities. Planning structures were contoured on patient-specific diagnostic magnetic resonance imaging (MRI), which were registered to a CT of similar head shape, obtained from an atlas-based database (AB-CT). These patient-specific diagnostic MRI and AB-CT data sets were used for preplan calculation, using NRG-CC001 constraints. At first fraction, AB-CTs were used as primary data sets and deformed to patient-specific cone beam CTs (CBCT) to give patient-matched density information. Brain, ventricle, and brain stem contours were matched through rigid translation and rotation to the corresponding anatomy on CBCT. Lens, optic nerve, and brain contours were manually edited based on CBCT visualization. Preplans were then reoptimized through online adaptation to create final, simulation-free plans, which were used if they met all objectives. Workflow tasks were timed. In addition, patients underwent CT-simulation to create immobilization devices and for prospective dosimetric comparison of simulation-free and simulation-based plans. RESULTS: Median time from MRI importation to completion of "preplan" was 1 weekday (range, 1-4). Median on-table workflow duration was 41 minutes (range, 34-70). NRG-CC001 constraints were achieved by 90% of the simulation-free plans. One patient's simulation-free plan failed a planning target volume coverage objective (89% instead of 90% coverage); this was deemed acceptable for first-fraction delivery, with an offline replan used for subsequent fractions. Both simulation-free and simulation CT-based plans otherwise met constraints, without clinically meaningful differences. CONCLUSIONS: Simulation-free HA-WBRT using online adaptive radiation therapy is feasible, safe, and results in dosimetrically comparable treatment plans to simulation CT-based workflows while providing convenience and time savings for patients.

18.
Phys Imaging Radiat Oncol ; 28: 100491, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37772278

RESUMO

Background and Purpose: Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) can be a time-consuming process compared to conventional whole brain techniques, thus potentially limiting widespread utilization. Therefore, we evaluated the in silico clinical feasibility, via dose-volume metrics and timing, by leveraging a computed tomography (CT)-based commercial adaptive radiotherapy (ART) platform and workflow in order to create and deliver patient-specific, simulation-free HA-WBRT. Materials and methods: Ten patients previously treated for central nervous system cancers with cone-beam computed tomography (CBCT) imaging were included in this study. The CBCT was the adaptive image-of-the-day to simulate first fraction on-board imaging. Initial contours defined on the MRI were rigidly matched to the CBCT. Online ART was used to create treatment plans at first fraction. Dose-volume metrics of these simulation-free plans were compared to standard-workflow HA-WBRT plans on each patient CT simulation dataset. Timing data for the adaptive planning sessions were recorded. Results: For all ten patients, simulation-free HA-WBRT plans were successfully created utilizing the online ART workflow and met all constraints. The median hippocampi D100% was 7.8 Gy (6.6-8.8 Gy) in the adaptive plan vs 8.1 Gy (7.7-8.4 Gy) in the standard workflow plan. All plans required adaptation at first fraction due to both a failing hippocampal constraint (6/10 adaptive fractions) and sub-optimal target coverage (6/10 adaptive fractions). Median time for the adaptive session was 45.2 min (34.0-53.8 min). Conclusions: Simulation-free HA-WBRT, with commercially available systems, was clinically feasible via plan-quality metrics and timing, in silico.

19.
Radiother Oncol ; 167: 172-178, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896459

RESUMO

PURPOSE: Lattice stereotactic body radiation therapy (SBRT) is a form of spatially fractionated radiation therapy (SFRT) using SBRT methods. This study reports clinical dosimetric endpoints achieved for Lattice SBRT plans delivering 20 Gy in 5 fractions to the periphery of a tumor with a simultaneous integrated boost (SIB) of 66.7 Gy, as part of a prospective Phase I clinical trial (NCT04133415). Additionally, it updates previously reported planning and delivery techniques based on extended experience with a broader patient population. METHODS: Patients were enrolled on a single-arm phase I trial conducted between November 2019 and August 2020. Eligibility was restricted to tumors >4.5 cm in the largest dimension. Characteristic SFRT dose gradients were achieved using a lattice of 1.5 cm diameter spheres spaced within the GTV in a regular pattern, with peak-to-valley dose varying from 66.7 Gy to 20 Gy within 1.5 cm. Organ-at-risk (OAR) sparing followed AAPM TG101 recommendations for 5-fraction SBRT. RESULTS: Twenty patients (22 plans) were enrolled on study, with one additional plan treated off study. All OAR and target coverage planning objectives were achieved, with the exception of a single small bronchus. Conformity of the 20 Gy isodose line significantly improved over the course of the study. The majority (85.2%) of treatment fractions were delivered in a 30 minutes timeslot, with 4 (3.5%) exceeding a total treatment time of 40 minutes. CONCLUSION: Lattice SBRT planning techniques produce consistent and efficient treatment plans. Refined techniques described here further improve the quality of the planning technique.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Estudos Prospectivos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
20.
Pract Radiat Oncol ; 12(2): e153-e160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34839048

RESUMO

PURPOSE: Widespread implementation of automated treatment planning in radiation therapy remains elusive owing to variability in clinic and physician preferences, making it difficult to ensure consistent plan parameters. We have developed an open-source class library with the aim to improve efficiency and consistency for automated treatment planning in radiation therapy. METHODS AND MATERIALS: An open-source class library has been developed that interprets clinical templates within a commercial treatment planning system into a treatment plan for automated planning. This code was leveraged for the automated planning of 39 patients and retrospectively compared with the 78 clinically approved manual plans. RESULTS: From the initial 39 patients, 74 of 78 plans were successfully generated without manual intervention. The target dose was more homogeneous for automated plans, with an average homogeneity index of 3.30 for manual plans versus 3.11 for automated plans (P = .107). The generalized equivalent uniform dose (gEUD) was decreased in the femurs and rectum for automated plans, with a mean gEUD of 3746 cGy versus 3338 cGy (P ≤ 0.001) and 5761 cGy versus 5634 cGy (P ≤ 0.001) for the femurs and rectum, respectively. Dose metrics for the bladder and rectum (V6500 cGy and V4000 cGy) showed recognizable but insignificant improvements. All automated plans delivered for quality assurance passed a gamma analysis (>95%), with an average composite pass rate of 99.3% for pelvis plans and 98.8% for prostate plans. Deliverability parameters such as total monitor units and aperture complexity indicated deliverable plans. CONCLUSIONS: Prostate cancer and pelvic node radiation therapy can be automated using volumetric modulated arc therapy planning and clinical templates based on a standardized clinical workflow. The class library developed in this study conveniently interfaced between the plan template and the treatment planning system to automatically generate high-quality plans on customizable templates.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa