Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biomed Sci ; 29(1): 1, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983527

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is an exceptional public health crisis that demands the timely creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies (mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun to urgently develop Ab-based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ab drugs for use as COVID-19 therapeutic agents. The detailed structure of the SARS-CoV-2 spike protein is known, and since this protein is key for viral infection, its receptor-binding domain (RBD) has become a major target for therapeutic Ab development. Because SARS-CoV-2 is an RNA virus with a high mutation rate, especially under the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is expected to be an important strategy for effective COVID-19 treatment. Moreover, SARS-CoV-2 infection may stimulate an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to combat cytokine storms have also been under intense development as treatments for COVID-19. In addition to their use as drugs, Abs are currently being utilized in SARS-CoV-2 detection tests, including antigen and immunoglobulin tests. Such Ab-based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID-19. Herein, we highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic.


Assuntos
Anticorpos Monoclonais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Pandemias , Reprodutibilidade dos Testes , Glicoproteína da Espícula de Coronavírus/genética
2.
J Biomed Sci ; 29(1): 108, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550570

RESUMO

BACKGROUND: The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harbor diverse spike (S) protein sequences, which can greatly influence the efficacies of therapeutics. Therefore, it would be of great value to develop neutralizing monoclonal antibodies (mAbs) that can broadly recognize multiple variants. METHODS: Using an mRNA-LNP immunization strategy, we generated several mAbs that specifically target the conserved S2 subunit of SARS-CoV-2 (B-S2-mAbs). These mAbs were assessed for their neutralizing activity with pseudotyped viruses and binding ability for SARS-CoV-2 variants. RESULTS: Among these mAbs, five exhibited strong neutralizing ability toward the Gamma variant and also recognized viral S proteins from the Wuhan, Alpha, Beta, Gamma, Delta and Omicron (BA.1, BA.2 and BA.5) variants. Furthermore, we demonstrated the broad reactivities of these B-S2-mAbs in several different applications, including immunosorbent, immunofluorescence and immunoblotting assays. In particular, B-S2-mAb-2 exhibited potent neutralization of Gamma variant (IC50 = 0.048 µg/ml) in a pseudovirus neutralization assay. The neutralizing epitope of B-S2-mAb-2 was identified by phage display as amino acid residues 1146-1152 (DSFKEEL) in the S2 subunit HR2 domain of SARS-CoV-2. CONCLUSION: Since there are not many mAbs that can bind the S2 subunit of SARS-CoV-2 variants, our set of B-S2-mAbs may provide important materials for basic research and potential clinical applications. Importantly, our study results demonstrate that the viral S2 subunit can be targeted for the production of cross-reactive antibodies, which may be used for coronavirus detection and neutralization.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
3.
J Biomed Sci ; 29(1): 68, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096815

RESUMO

The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Vacinas Virais , Antivirais/farmacologia , Antivirais/uso terapêutico , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinas Virais/uso terapêutico
4.
J Biomed Sci ; 28(1): 80, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814920

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus with a high mutation rate. Importantly, several currently circulating SARS-CoV-2 variants are associated with loss of efficacy for both vaccines and neutralizing antibodies. METHODS: We analyzed the binding activity of six highly potent antibodies to the spike proteins of SARS-CoV-2 variants, assessed their neutralizing abilities with pseudovirus and authentic SARS-CoV-2 variants and evaluate efficacy of antibody cocktail in Delta SARS-CoV-2-infected hamster models as prophylactic and post-infection treatments. RESULTS: The tested RBD-chAbs, except RBD-chAb-25, maintained binding ability to spike proteins from SARS-CoV-2 variants. However, only RBD-chAb-45 and -51 retained neutralizing activities; RBD-chAb-1, -15, -25 and -28 exhibited diminished neutralization for all SARS-CoV-2 variants. Notably, several cocktails of our antibodies showed low IC50 values (3.35-27.06 ng/ml) against the SARS-CoV-2 variant pseudoviruses including United Kingdom variant B.1.1.7 (Alpha), South Africa variant B.1.351 (Beta), Brazil variant P1 (Gamma), California variant B.1.429 (Epsilon), New York variant B.1.526 (Iota), and India variants, B.1.617.1 (Kappa) and B.1.617.2 (Delta). RBD-chAb-45, and -51 showed PRNT50 values 4.93-37.54 ng/ml when used as single treatments or in combination with RBD-chAb-15 or -28, according to plaque assays with authentic Alpha, Gamma and Delta SARS-CoV-2 variants. Furthermore, the antibody cocktail of RBD-chAb-15 and -45 exhibited potent prophylactic and therapeutic effects in Delta SARS-CoV-2 variant-infected hamsters. CONCLUSIONS: The cocktail of RBD-chAbs exhibited potent neutralizing activities against SARS-CoV-2 variants. These antibody cocktails are highly promising candidate tools for controlling new SARS-CoV-2 variants, including Delta.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/genética , Humanos , Coelhos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tratamento Farmacológico da COVID-19
5.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830291

RESUMO

Mitigation strategies of the coronavirus disease 2019 (COVID-19) pandemic have been greatly hindered by the continuous emergence of SARS-CoV-2 variants. New sensitive, rapid diagnostic tests for the wide-spectrum detection of viral variants are needed. We generated a panel of 41 monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein (NP) by using mice hybridoma techniques. Of these mAbs, nine exhibited high binding activities and were applied in latex-based lateral flow immunoassays (LFIAs). The LFIAs utilizing NP-mAb-7 and -40 had the best sensitivity and lowest limit of detection: 8 pg for purified NP and 625 TCID50/mL for the authentic virus (hCoV-19/Taiwan/4/2020). The specificity tests showed that the NP-mAb-40/7 LFIA strips did not cross-react with five human coronavirus strains or 20 other common respiratory pathogens. Importantly, we found that 10 NP mutants, including alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and delta (B.1.617.2) variants, could be detected by NP-mAb-40/7 LFIA strips. A clinical study (n = 60) of the NP-mAb-40/7 LFIA strips demonstrated a specificity of 100% and sensitivity of 90% in infected individuals with cycle threshold (Ct) values < 29.5. These anti-NP mAbs have strong potential for use in the clinical detection of SARS-CoV-2 infection, whether the virus is wild-type or a variant of concern.


Assuntos
Anticorpos Monoclonais/imunologia , COVID-19/diagnóstico , Imunoensaio/métodos , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Reações Antígeno-Anticorpo , COVID-19/virologia , Coronavirus/metabolismo , Reações Cruzadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adulto Jovem
6.
J Immunol ; 191(6): 3328-36, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23940278

RESUMO

The IFN immune system comprises type I, II, and III IFNs, signals through the JAK-STAT pathway, and plays central roles in host defense against viral infection. Posttranslational modifications such as ubiquitination regulate diverse molecules in the IFN pathway. To search for the deubiquitinating enzymes (DUBs) involved in the antiviral activity of IFN, we used RNA interference screening to identify a human DUB, ubiquitin-specific protease (USP) 13, whose expression modulates the antiviral activity of IFN-α against dengue virus serotype 2 (DEN-2). The signaling events and anti-DEN-2 activities of IFN-α and IFN-γ were reduced in cells with USP13 knockdown but enhanced with USP13 overexpression. USP13 may regulate STAT1 protein because the protein level and stability of STAT1 were increased with USP13 overexpression. Furthermore, STAT1 ubiquitination was reduced in cells with USP13 overexpression and increased with USP13 knockdown regardless of with or without IFN-α treatment. Thus, USP13 positively regulates type I and type II IFN signaling by deubiquitinating and stabilizing STAT1 protein. Overall, to our knowledge, USP13 is the first DUB identified to modulate STAT1 and play a role in the antiviral activity of IFN against DEN-2 replication.


Assuntos
Vírus da Dengue/imunologia , Endopeptidases/metabolismo , Interferons/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/imunologia , Western Blotting , Endopeptidases/imunologia , Imunofluorescência , Humanos , Imunoprecipitação , Interferons/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/imunologia , Proteases Específicas de Ubiquitina
7.
Pharmaceutics ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959297

RESUMO

Nucleic acid-based therapeutics have demonstrated their efficacy in the treatment of various diseases and vaccine development. Antisense oligonucleotide (ASO) technology exploits a single-strand short oligonucleotide to either cause target RNA degradation or sterically block the binding of cellular factors or machineries to the target RNA. Chemical modification or bioconjugation of ASOs can enhance both its pharmacokinetic and pharmacodynamic performance, and it enables customization for a specific clinical purpose. ASO-based therapies have been used for treatment of genetic disorders, cancer and viral infections. In particular, ASOs can be rapidly developed for newly emerging virus and their reemerging variants. This review discusses ASO modifications and delivery options as well as the design of antiviral ASOs. A better understanding of the viral life cycle and virus-host interactions as well as advances in oligonucleotide technology will benefit the development of ASO-based antiviral therapies.

8.
Front Microbiol ; 10: 2885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921062

RESUMO

A variety of pathogens take advantage of cellular heat shock proteins (HSPs) to complete their life cycle and exert pathogenic effects. MRJ (DNAJB6), a member of the heat shock protein 40 family, acts as a molecular chaperone for a wide range of cellular processes. MRJ mutations are linked to human diseases, such as muscular dystrophy and neurodegenerative diseases. There are two MRJ isoforms generated by alternative use of terminal exons, which differ in their C-terminus. This mini-review summarizes how these two MRJ isoforms participate differentially in viral production and virulence, and the possibility for MRJ as a therapeutic target.

9.
Mol Ther Nucleic Acids ; 14: 251-261, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641477

RESUMO

The molecular chaperon MRJ (DNAJB6) exhibits two splice isoforms that have different roles in human viral infection, but the regulatory mechanism of MRJ isoform expression is yet unclear. In this study, we show that reduction of the polyadenylation factor CstF64 was correlated with the increase of the MRJ large isoform (MRJ-L) in human macrophages and elucidate the mechanism underlying CstF64-modulated MRJ isoform expression. Moreover, we exploited an antisense strategy targeting MRJ-L for virus replication. A morpholino oligonucleotide complementary to the 5' splice site of MRJ intron 8 downregulated MRJ-L expression and suppressed the replication of not only HIV-1 but also respiratory syncytial virus (RSV). We demonstrated that downregulation of the MRJ-L level reduced HIV-1 replication as well as the subgenomic mRNA and viral production of RSV. The present findings that two human health-threatening viruses take advantage of MRJ-L for infection suggest MRJ-L as a potential target for broad-spectrum antiviral strategy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa