Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stem Cells ; 33(8): 2431-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25850942

RESUMO

While enucleation is a critical step in the terminal differentiation of human red blood cells, the molecular mechanisms underlying this unique process remain unclear. To investigate erythroblast enucleation, we studied the erythroid differentiation of human embryonic stem cells (hESCs), which provide a unique model for deeper understanding of the development and differentiation of multiple cell types. First, using a two-step protocol, we demonstrated that terminal erythroid differentiation from hESCs is directly dependent on the age of the embryoid bodies. Second, by choosing hESCs in two extreme conditions of erythroid culture, we obtained an original differentiation model which allows one to study the mechanisms underlying the enucleation of erythroid cells by analyzing the gene and miRNA (miR) expression profiles of cells from these two culture conditions. Third, using an integrated analysis of mRNA and miR expression profiles, we identified five miRs potentially involved in erythroblast enucleation. Finally, by selective knockdown of these five miRs we found miR-30a to be a regulator of erythroblast enucleation in hESCs.


Assuntos
Diferenciação Celular , Eritroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , Células Cultivadas , Eritroblastos/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos
2.
Haematologica ; 97(12): 1795-803, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22733021

RESUMO

BACKGROUND: Human induced pluripotent stem cells offer perspectives for cell therapy and research models for diseases. We applied this approach to the normal and pathological erythroid differentiation model by establishing induced pluripotent stem cells from normal and homozygous sickle cell disease donors. DESIGN AND METHODS: We addressed the question as to whether these cells can reach complete erythroid terminal maturation notably with a complete switch from fetal to adult hemoglobin. Sickle cell disease induced pluripotent stem cells were differentiated in vitro into red blood cells and characterized for their terminal maturation in terms of hemoglobin content, oxygen transport capacity, deformability, sickling and adherence. Nucleated erythroblast populations generated from normal and pathological induced pluripotent stem cells were then injected into non-obese diabetic severe combined immunodeficiency mice to follow the in vivo hemoglobin maturation. RESULTS: We observed that in vitro erythroid differentiation results in predominance of fetal hemoglobin which rescues the functionality of red blood cells in the pathological model of sickle cell disease. We observed, in vivo, the switch from fetal to adult hemoglobin after infusion of nucleated erythroid precursors derived from either normal or pathological induced pluripotent stem cells into mice. CONCLUSIONS: These results demonstrate that human induced pluripotent stem cells: i) can achieve complete terminal erythroid maturation, in vitro in terms of nucleus expulsion and in vivo in terms of hemoglobin maturation; and ii) open the way to generation of functionally corrected red blood cells from sickle cell disease induced pluripotent stem cells, without any genetic modification or drug treatment.


Assuntos
Anemia Falciforme/patologia , Diferenciação Celular , Eritrócitos/patologia , Eritropoese/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Líquido Amniótico/química , Anemia Falciforme/metabolismo , Animais , Adesão Celular , Células Cultivadas , Eritrócitos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Hemoglobinas/metabolismo , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oxigênio/metabolismo
3.
Leukemia ; 36(2): 540-548, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34556797

RESUMO

Myeloma is characterized by bone lesions, which are related to both an increased osteoclast activity and a defect in the differentiation of medullary mesenchymal stem cells (MSCs) into osteoblasts. Outside the medullary environment, adipocyte-derived MSCs (ASCs) could represent a source of functional osteoblasts. However, we recently found a defect in the osteoblastic differentiation of ASCs from myeloma patients (MM-ASCs). We examined the effects of plasma from myeloma patients at diagnosis (MM-plasmas) and in complete remission (CR-plasmas) and from healthy donors on the osteoblastic differentiation of healthy donor-derived ASCs (HD-ASCs). Osteoblastogenesis in HD-ASCs was suppressed by MM-plasmas. Seven cytokines (ANG1, ENA-78, EGF, PDGF-AA/AB/BB, and TARC) were increased in MM-plasmas and separately inhibited the osteoblastic differentiation of HD-ASCs. Comparison of MM-ASCs and HD-ASCs by RNA sequencing showed that two master genes characterizing adipocyte differentiation, CD36 and PPARγ, were upregulated in MM-ASCs as compared to HD-ASCs. Finally, we demonstrated a significant increase in CD36 and PPARγ expression in HD-ASCs in the presence of MM-plasmas or the seven cytokines individually, similarly as in MM-ASCs. We conclude that specific cytokines in MM-plasmas, besides the well-known DKK1, inhibit the osteoblastic differentiation of MM- and HD-ASCs with a skewing towards adipocyte differentiation.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Citocinas/farmacologia , Células-Tronco Mesenquimais/citologia , Mieloma Múltiplo/metabolismo , Osteoblastos/citologia , Células-Tronco/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Voluntários Saudáveis , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
4.
Haematologica ; 95(3): 398-405, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19815832

RESUMO

BACKGROUND: Anemia is a characteristic of myelodysplastic syndromes, such as the rare 5q- syndrome, but its mechanism remains unclear. In particular, data are lacking on the terminal phase of differentiation of erythroid cells (enucleation) in myelodysplastic syndromes. DESIGN AND METHODS: We used a previously published culture model to generate mature red blood cells in vitro from human hematopoietic progenitor cells in order to study the pathophysiology of the 5q- syndrome. Our model enables analysis of cell proliferation and differentiation at a single cell level and determination of the enucleation capacity of erythroid precursors. RESULTS: The erythroid commitment of 5q(del) clones was not altered and their terminal differentiation capacity was preserved since they achieved final erythroid maturation (enucleation stage). The drop in red blood cell production was secondary to the decrease in the erythroid progenitor cell pool and to impaired proliferative capacity. RPS14 gene haploinsufficiency was related to defective erythroid proliferation but not to differentiation capacity. CONCLUSIONS: The 5q- syndrome should be considered a quantitative rather than qualitative bone marrow defect. This observation might open the way to new therapeutic concepts.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/genética , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Eritrócitos/citologia , Células Precursoras Eritroides/fisiologia , Síndromes Mielodisplásicas/genética , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Eritropoese , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/patologia , Proteínas Ribossômicas/genética
5.
Haematologica ; 95(10): 1651-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20494935

RESUMO

BACKGROUND: Ex vivo manufacture of red blood cells from stem cells is a potential means to ensure an adequate and safe supply of blood cell products. Advances in somatic cell reprogramming of human induced pluripotent stem cells have opened the door to generating specific cells for cell therapy. Human induced pluripotent stem cells represent a potentially unlimited source of stem cells for erythroid generation for transfusion medicine. DESIGN AND METHODS: We characterized the erythroid differentiation and maturation of human induced pluripotent stem cell lines obtained from human fetal (IMR90) and adult fibroblasts (FD-136) compared to those of a human embryonic stem cell line (H1). Our protocol comprises two steps: (i) differentiation of human induced pluripotent stem cells by formation of embryoid bodies with indispensable conditioning in the presence of cytokines and human plasma to obtain early erythroid commitment, and (ii) differentiation/maturation to the stage of cultured red blood cells in the presence of cytokines. The protocol dispenses with major constraints such as an obligatory passage through a hematopoietic progenitor, co-culture on a cellular stroma and use of proteins of animal origin. RESULTS: We report for the first time the complete differentiation of human induced pluripotent stem cells into definitive erythrocytes capable of maturation up to enucleated red blood cells containing fetal hemoglobin in a functional tetrameric form. CONCLUSIONS: Red blood cells generated from human induced pluripotent stem cells pave the way for future development of allogeneic transfusion products. This could be done by banking a very limited number of red cell phenotype combinations enabling the safe transfusion of a great number of immunized patients.


Assuntos
Eritrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Citocinas/farmacologia , Transfusão de Eritrócitos , Humanos
7.
Nat Biotechnol ; 23(1): 69-74, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15619619

RESUMO

We describe here the large-scale ex vivo production of mature human red blood cells (RBCs) from hematopoietic stem cells of diverse origins. By mimicking the marrow microenvironment through the application of cytokines and coculture on stromal cells, we coupled substantial amplification of CD34(+) stem cells (up to 1.95 x 10(6)-fold) with 100% terminal differentiation into fully mature, functional RBCs. These cells survived in nonobese diabetic/severe combined immunodeficient mice, as do native RBCs. Our system for producing 'cultured RBCs' lends itself to a fundamental analysis of erythropoiesis and provides a simple in vitro model for studying important human viral or parasitic infections that target erythroid cells. Further development of large-scale production of cultured RBCs will have implications for gene therapy, blood transfusion and tropical medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Eritrócitos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Antígenos CD34/biossíntese , Diferenciação Celular , Separação Celular , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Células Precursoras Eritroides/metabolismo , Citometria de Fluxo , Terapia Genética , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Confocal , Oxigênio/metabolismo , Reticulócitos/citologia , Células-Tronco/metabolismo , Fatores de Tempo , Raios Ultravioleta
8.
Nat Biotechnol ; 20(5): 467-72, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981559

RESUMO

New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34+ progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.


Assuntos
Eritrócitos/citologia , Eritrócitos/fisiologia , Animais , Antígenos CD34/biossíntese , Diferenciação Celular , Divisão Celular , Separação Celular , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Sangue Fetal/citologia , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Hemoglobinas/metabolismo , Humanos , Cinética , Camundongos , Camundongos SCID , Perfusão , Células-Tronco/metabolismo , Fatores de Tempo
9.
Transfus Med Rev ; 25(3): 206-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21377319

RESUMO

The transfusion of red blood cells (RBCs) is now considered a well-settled and essential therapy. However, some difficulties and constraints still occur, such as long-term blood product shortage, blood donor population aging, known and yet unknown transfusion-transmitted infectious agents, growing cost of the transfusion supply chain management, and the inescapable blood group polymorphism barrier. Red blood cells can be now cultured in vitro from human hematopoietic, human embryonic, or human-induced pluripotent stem cells (hiPSCs). The highly promising hiPSC technology represents a potentially unlimited source of RBCs and opens the door to the revolutionary development of a new generation of allogeneic transfusion products. Assuming that in vitro large-scale cultured RBC production efficiently operates in the near future, we draw here some futuristic but realistic scenarios regarding potential applications for alloimmunized patients and those with a rare blood group. We retrospectively studied a cohort of 16,486 consecutive alloimmunized patients (10-year period), showing 1 to 7 alloantibodies with 361 different antibody combinations. We showed that only 3 hiPSC clones would be sufficient to match more than 99% of the 16,486 patients in need of RBC transfusions. The study of the French National Registry of People with a Rare Blood Phenotype/Genotype (10-year period) shows that 15 hiPSC clones would cover 100% of the needs in patients of white ancestry. In addition, one single hiPSC clone would meet 73% of the needs in alloimmunized patients with sickle cell disease for whom rare cryopreserved RBC units were required. As a result, we consider that a very limited number of RBC clones would be able to not only provide for the need for most alloimmunized patients and those with a rare blood group but also efficiently allow for a policy for alloimmunization prevention in multiply transfused patients.


Assuntos
Células-Tronco Adultas , Armazenamento de Sangue/métodos , Tipagem e Reações Cruzadas Sanguíneas/métodos , Eritrócitos/fisiologia , Isoanticorpos/imunologia , Células-Tronco Pluripotentes , Adulto , Animais , Coleta de Amostras Sanguíneas/métodos , Diferenciação Celular , Transfusão de Eritrócitos/métodos , Humanos , Isoanticorpos/efeitos adversos
10.
Stem Cells Int ; 2011: 405429, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21961016

RESUMO

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34(+) cells. In this in vitro model, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramatic in vitro expansion (100-fold more when compared to CB CD34(+)) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10-15% cloning efficiency for adult CD34(+) cells. This work supports the idea that FL remains a model of study and is not a candidate for ex vivo RBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.

11.
Stem Cells ; 24(9): 2150-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16946001

RESUMO

We examined whether ex vivo expansion of umbilical cord blood progenitor cells affected their capacity to generate immune cells such as T lymphocytes (TLs) and dendritic cells (DCs). The capacity to generate TLs from cord blood CD34(+) cells expanded for 14 days (d14) was compared with that of nonexpanded CD34(+) cells (d0) using fetal thymus organ cultures or transfer into nonobese diabetic/severe combined immunodeficient mice. The cell preparations yielded comparable percentages of immature (CD4(+)CD8(-), CD4(+)CD8(+)) TLs and functional mature (CD3(+)CD4(+), CD3(+)CD8(+)) TLs with an analogous TCR (T-cell receptor)-Vbeta repertoire pattern. As regards DCs, d0 and d14 CD34(+) cells also yielded similar percentages of CD1a(+) DCs with the same expression levels of HLA-DR, costimulatory and adhesion molecules, and chemokine receptors. DCs derived from either d14 or d0 CD34(+) stimulated allogeneic TLs to the same extent, and the cytokine pattern production of these allogeneic TLs was similar with no shift toward a predominant Th1 or Th2 response. Even though the intrinsic capacity of d14 CD34(+) cells to generate DCs was 13-fold lower than that of d0 CD34(+) cells, this reduction was offset by the prior amplification of the CD34(+) cells, resulting in the overall production of 15-fold more DCs. These data indicate that ex vivo expansion of CD34(+) cells does not impair T lymphopoiesis nor DC differentiation capacity.


Assuntos
Antígenos CD34/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Sangue Fetal/citologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Técnicas de Cultura de Órgãos , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa