Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(9): 107548, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636062

RESUMO

Low circulating phosphate (Pi) leads to rickets, characterized by expansion of the hypertrophic chondrocytes (HCs) in the growth plate due to impaired HC apoptosis. Studies in HCs demonstrate that Pi activates the Raf/MEK/ERK1/2 and mitochondrial apoptotic pathways. To determine how Pi activates these pathways, a small-molecule screen was undertaken to identify inhibitors of Pi-induced ERK1/2 phosphorylation in HCs. Vascular endothelial growth factor receptor 2 (VEGFR2) was identified as a target. In vitro studies in HCs demonstrate that VEGFR2 inhibitors block Pi-induced pERK1/2 and caspase-9 cleavage. Like Pi, rhVEGF activates ERK1/2 and caspase-9 in HCs and induces phosphorylation of VEGFR2, confirming that Pi activates this signaling pathway in HCs. Chondrocyte-specific depletion of VEGFR2 leads to an increase in HCs, impaired vascular invasion, and a decrease in HC apoptosis. Thus, these studies define a role for VEGFR2 in transducing Pi signals and mediating its effects on growth plate maturation.

2.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38066669

RESUMO

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Animais , Camundongos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/metabolismo , Minerais/uso terapêutico , Fosfatos , Vitamina D/metabolismo
3.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878523

RESUMO

Risk factors for nonalcoholic hepatic steatosis include obesity and vitamin D deficiency which commonly coexist. Thus, the role of vitamin D signaling in the prevention of hepatic steatosis in the absence of obesity or a "Western" high-fat diet is unclear. These studies were performed to address the role of the adipocyte vitamin D receptor (VDR) in the prevention of hepatic steatosis in mice fed a chow diet containing 5% fat by weight. Female mice with adipocyte VDR ablation (Adipoq-Cre; VDRflox/flox) exhibited a mild increase in weight gain at age 70 days, accompanied by an increase in visceral white adipose tissue (VAT) weight. While they did not exhibit evidence of hepatic inflammation or fibrosis, an increase in hepatic lipid content was observed. This was accompanied by an increase in the hepatic expression of genes involved in fatty acid transport and synthesis, as well as fatty acid oxidation. Markers of hepatic inflammation and fibrosis were unaffected by adipocyte VDR ablation. Consistent with the increase in VAT weight in the Adipoq-Cre; VDRflox/flox mice, higher levels of transcripts encoding adipogenesis-related genes were observed in VAT. In contrast to other models of impaired vitamin D signaling studied in the setting of a high-fat or "Western" diet, the Adipoq-Cre; VDRflox/flox mice do not exhibit hepatic inflammation or fibrosis. These findings suggest that the adipocyte VDR regulates hepatic lipid accumulation, but in the absence of obesity or a high-fat diet, is not required to prevent hepatic inflammation or fibrosis.


Assuntos
Dieta com Restrição de Gorduras , Gordura Intra-Abdominal/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores de Calcitriol/fisiologia , Adipócitos/química , Animais , Feminino , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores de Calcitriol/deficiência , Receptores de Calcitriol/genética , Transdução de Sinais/fisiologia , Vitamina D/metabolismo
4.
J Bone Miner Res ; 36(8): 1510-1520, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33900666

RESUMO

Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Medula Óssea , Fosfatos , Tecido Adiposo , Animais , Células da Medula Óssea , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Osteoblastos , Osteogênese
5.
J Bone Miner Res ; 36(12): 2317-2328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523743

RESUMO

X-linked hypophosphatemia (XLH) is a hereditary musculoskeletal disorder caused by loss-of-function mutations in the PHEX gene. In XLH, increased circulating fibroblast growth factor 23 (FGF23) levels cause renal phosphate wasting and low concentrations of 1,25-dihydroxyvitamin D, leading to an early clinical manifestation of rickets. Importantly, hearing loss is commonly observed in XLH patients. We present here data from two XLH patients with marked conductive hearing loss. To decipher the underlying pathophysiology of hearing loss in XLH, we utilized the Hyp mouse model of XLH and measured auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) to functionally assess hearing. As evidenced by the increased ABR/DPOAE threshold shifts in the mid-frequency range, these measurements indicated a predominantly conductive hearing loss in Hyp mice compared to wild-type (WT) mice. Therefore, we carried out an in-depth histomorphometric and scanning electron microscopic analysis of the auditory ossicles. Quantitative backscattered electron imaging (qBEI) indicated a severe hypomineralization of the ossicles in Hyp mice, evidenced by lower calcium content (CaMean) and higher void volume (ie, porosity) compared to WT mice. Histologically, voids correlated with unmineralized bone (ie, osteoid), and the osteoid volume per bone volume (OV/BV) was markedly higher in Hyp mice than WT mice. The density of osteocyte lacunae was lower in Hyp mice than in WT mice, whereas osteocyte lacunae were enlarged. Taken together, our findings highlight the importance of ossicular mineralization for hearing conduction and point toward the potential benefit of improving mineralization to prevent hearing loss in XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Ossículos da Orelha/patologia , Raquitismo Hipofosfatêmico Familiar , Perda Auditiva Condutiva , Animais , Modelos Animais de Doenças , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico por imagem , Raquitismo Hipofosfatêmico Familiar/genética , Fator de Crescimento de Fibroblastos 23 , Humanos , Camundongos , Endopeptidase Neutra Reguladora de Fosfato PHEX
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa