Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D138-D144, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933855

RESUMO

The Gene Expression Omnibus (GEO) is an international public repository that archives gene expression and epigenomics data sets generated by next-generation sequencing and microarray technologies. Data are typically submitted to GEO by researchers in compliance with widespread journal and funder mandates to make generated data publicly accessible. The resource handles raw data files, processed data files and descriptive metadata for over 200 000 studies and 6.5 million samples, all of which are indexed, searchable and downloadable. Additionally, GEO offers web-based tools that facilitate analysis and visualization of differential gene expression. This article presents the current status and recent advancements in GEO, including the generation of consistently computed gene expression count matrices for thousands of RNA-seq studies, and new interactive graphical plots in GEO2R that help users identify differentially expressed genes and assess data set quality. The GEO repository is built and maintained by the National Center for Biotechnology Information (NCBI), a division of the National Library of Medicine (NLM), and is publicly accessible at https://www.ncbi.nlm.nih.gov/geo/.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Expressão Gênica , Bases de Dados Genéticas , Análise de Sequência com Séries de Oligonucleotídeos
2.
Viruses ; 16(3)2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543795

RESUMO

Genomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has been a key public health tool for curbing the spread of the virus. As a result, an unprecedented number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed for rapid identification of genetic variants, enabling the timely design and testing of therapies and deployment of new vaccine formulations to combat the new variants. However, despite the technological advances of deep sequencing, the analysis of the raw sequence data generated globally is neither standardized nor consistent, leading to vastly disparate sequences that may impact identification of variants. Here, we show that for both Illumina and Oxford Nanopore sequencing platforms, downstream bioinformatic protocols used by industry, government, and academic groups resulted in different virus sequences from same sample. These bioinformatic workflows produced consensus genomes with differences in single nucleotide polymorphisms, inclusion and exclusion of insertions, and/or deletions, despite using the same raw sequence as input datasets. Here, we compared and characterized such discrepancies and propose a specific suite of parameters and protocols that should be adopted across the field. Consistent results from bioinformatic workflows are fundamental to SARS-CoV-2 and future pathogen surveillance efforts, including pandemic preparation, to allow for a data-driven and timely public health response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Fluxo de Trabalho , Biologia Computacional
3.
bioRxiv ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380755

RESUMO

During the COVID-19 pandemic, SARS-CoV-2 surveillance efforts integrated genome sequencing of clinical samples to identify emergent viral variants and to support rapid experimental examination of genome-informed vaccine and therapeutic designs. Given the broad range of methods applied to generate new viral genomes, it is critical that consensus and variant calling tools yield consistent results across disparate pipelines. Here we examine the impact of sequencing technologies (Illumina and Oxford Nanopore) and 7 different downstream bioinformatic protocols on SARS-CoV-2 variant calling as part of the NIH Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Tracking Resistance and Coronavirus Evolution (TRACE) initiative, a public-private partnership established to address the COVID-19 outbreak. Our results indicate that bioinformatic workflows can yield consensus genomes with different single nucleotide polymorphisms, insertions, and/or deletions even when using the same raw sequence input datasets. We introduce the use of a specific suite of parameters and protocols that greatly improves the agreement among pipelines developed by diverse organizations. Such consistency among bioinformatic pipelines is fundamental to SARS-CoV-2 and future pathogen surveillance efforts. The application of analysis standards is necessary to more accurately document phylogenomic trends and support data-driven public health responses.

4.
Nucleic Acids Res ; 32(Web Server issue): W654-9, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215470

RESUMO

The Genotyping tool at the National Center for Biotechnology Information is a web-based program that identifies the genotype (or subtype) of recombinant or non-recombinant viral nucleotide sequences. It works by using BLAST to compare a query sequence to a set of reference sequences for known genotypes. Predefined reference genotypes exist for three major viral pathogens: human immunodeficiency virus 1 (HIV-1), hepatitis C virus (HCV) and hepatitis B virus (HBV). User-defined reference sequences can be used at the same time. The query sequence is broken into segments for comparison to the reference so that the mosaic organization of recombinant sequences could be revealed. The results are displayed graphically using color-coded genotypes. Therefore, the genotype(s) of any portion of the query can quickly be determined. The Genotyping tool can be found at: http://www.ncbi.nih.gov/projects/genotyping/formpage.cgi.


Assuntos
DNA Viral/análise , Genes Virais , Software , Vírus/classificação , Algoritmos , Gráficos por Computador , Genoma Viral , Genótipo , HIV-1/classificação , HIV-1/genética , Hepacivirus/classificação , Hepacivirus/genética , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Internet , Dados de Sequência Molecular , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa