Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29129375

RESUMO

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiões Promotoras Genéticas
2.
Plant Physiol ; 194(2): 662-672, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792703

RESUMO

Chloroplast starch granules (cpSGs) store energy harvested through photosynthesis in plants, and cpSG dynamics have important roles in plant energy metabolism and stress responses. To date, cpSGs have been visualized using several methods, such as iodine staining; however, no method can be used to specifically visualize cpSGs in living cells from various plant species. Here, we report a simple method to visualize cpSGs in living plant cells in various species by staining with fluorescein, a commonly used fluorescent dye. We show that fluorescein is taken up into chloroplasts and interacts with cpSGs similarly to iodine. Fluorescein also interacts with refined starch in vitro. Using a fluorescein derivative for ultrabright cpSG imaging, we produced high-quality 3D reconstructions of cpSGs and evaluated their accumulation in multiple plant species. As fluorescein is well known and readily purchasable, our fluorescein-based staining method should contribute to all research regarding starch.


Assuntos
Iodo , Folhas de Planta , Fluoresceína/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Amido/metabolismo , Plantas/metabolismo , Coloração e Rotulagem , Iodo/metabolismo
3.
Plant Cell Physiol ; 65(5): 762-769, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38466577

RESUMO

In heterotrophs, heme degradation produces bilirubin, a tetrapyrrole compound that has antioxidant activity. In plants, heme is degraded in plastids and is believed to be converted to phytochromobilin rather than bilirubin. Recently, we used the bilirubin-inducible fluorescent protein UnaG to reveal that plants produce bilirubin via a non-enzymatic reaction with NADPH. In the present study, we used an UnaG-based live imaging system to visualize bilirubin accumulation in Arabidopsis thaliana and Nicotiana benthamiana at the organelle and tissue levels. In chloroplasts, bilirubin preferentially accumulated in the stroma, and the stromal bilirubin level increased upon dark treatment. Investigation of intracellular bilirubin distribution in leaves and roots showed that it accumulated mostly in plastids, with low levels detected in the cytosol and other organelles, such as peroxisomes, mitochondria and the endoplasmic reticulum. A treatment that increased bilirubin production in chloroplasts decreased the bilirubin level in peroxisomes, implying that a bilirubin precursor is transported between the two organelles. At the cell and tissue levels, bilirubin showed substantial accumulation in the root elongation region but little or none in the root cap and guard cells. Intermediate bilirubin accumulation was observed in other shoot and root tissues, with lower levels in shoot tissues. Our data revealed the distribution of bilirubin in plants, which has implications for the transport and physiological function of tetrapyrroles.


Assuntos
Arabidopsis , Bilirrubina , Nicotiana , Raízes de Plantas , Arabidopsis/metabolismo , Nicotiana/metabolismo , Bilirrubina/metabolismo , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/metabolismo , Peroxissomos/metabolismo
4.
Plant Cell Environ ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736289

RESUMO

Chloroplasts accumulate in regions of plant cells exposed to irradiation to maximize light reception for efficient photosynthesis. This response is mediated by the blue-light receptor phototropin. Upon the perception of blue light, phototropin is photoactivated, an unknown signal is transmitted from the photoactivated phototropin to distant chloroplasts, and the chloroplasts begin their directional movement. How activated phototropin initiates this signal transmission is unknown. Here, using the liverwort Marchantia polymorpha, we analysed whether increased photoactive phototropin levels mediate signal transmission and chloroplast behaviour during the accumulation response. The signal transmission rate was higher in transgenic cells overexpressing phototropin than in wild-type cells. However, the chloroplast directional movement was similar between wild-type and transgenic cells. Consistent with the observation, increasing the amount of photoactivated phototropin through higher blue-light intensity also accelerated signal transmission but did not affect chloroplast behaviour in wild-type cells. Photoactivation of phototropin under weak blue-light led to the greater protein level of phosphorylated phototropin in cells overexpressing phototropin than in wild-type cells, whereas the autophosphorylation level within each phototropin molecule was similar. These results indicate that the abundance of photoactivated phototropin modulates the signal transmission rate to distant chloroplasts but does not affect chloroplast behaviour during the accumulation response.

5.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282011

RESUMO

The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fosforilação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
6.
Plant J ; 111(1): 205-216, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476214

RESUMO

Plant cells alter the intracellular positions of chloroplasts to ensure efficient photosynthesis, a process controlled by the blue light receptor phototropin. Chloroplasts migrate toward weak light (accumulation response) and move away from excess light (avoidance response). Chloroplasts are encircled by the endoplasmic reticulum (ER), which forms a complex network throughout the cytoplasm. To ensure rapid chloroplast relocation, the ER must alter its structure in conjunction with chloroplast relocation movement, but little is known about the underlying mechanism. Here, we searched for interactors of phototropin in the liverwort Marchantia polymorpha and identified a RETICULON (RTN) family protein; RTN proteins play central roles in ER tubule formation and ER network maintenance by stabilizing the curvature of ER membranes in eukaryotic cells. Marchantia polymorpha RTN1 (MpRTN1) is localized to ER tubules and the rims of ER sheets, which is consistent with the localization of RTNs in other plants and heterotrophs. The Mprtn1 mutant showed an increased ER tubule diameter, pointing to a role for MpRTN1 in ER membrane constriction. Furthermore, Mprtn1 showed a delayed chloroplast avoidance response but a normal chloroplast accumulation response. The live cell imaging of ER dynamics revealed that ER restructuring was impaired in Mprtn1 during the chloroplast avoidance response. These results suggest that during the chloroplast avoidance response, MpRTN1 restructures the ER network and facilitates chloroplast movement via an interaction with phototropin. Our findings provide evidence that plant cells respond to fluctuating environmental conditions by controlling the movements of multiple organelles in a synchronized manner.


Assuntos
Marchantia , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Luz , Marchantia/fisiologia , Fototropinas/metabolismo
7.
Plant Cell Environ ; 46(6): 1822-1832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36782387

RESUMO

Chloroplasts move to the periclinal walls of cells under weak light to harness light energy for photosynthesis and to anticlinal walls to avoid strong light. These responses involve the cytoskeleton components microtubules and/or actin filaments. In the dark, chloroplasts move to the anticlinal cell walls bordering neighbouring cells (dark-positioning response), but this response in various plants normally requires a prolonged dark incubation period, which has hampered analysis. However, we recently demonstrated the dark-positioning response that can be induced after a short period of dark incubation in the liverwort Apopellia endiviifolia. Here, we investigated whether the cytoskeleton components function in the dark-positioning response of A. endiviifolia cells. Microtubules and actin filaments were fluorescently visualised in A. endiviifolia cells and were disrupted following treatment with the microtubule and actin filament polymerisation inhibitors. The dark-positioning response was unaffected in the cells with disrupted microtubules. By contrast, the dark-positioning response was inhibited by the disruption of actin filaments. The disruption of actin filaments also restricted chloroplast mobility during light- and cold-dependent chloroplast movements in A. endiviifolia. Therefore, the dark-positioning response of A. endiviifolia depends solely on an actin filament-associated motility mechanism, as do the light- and cold-dependent chloroplast responses.


Assuntos
Hepatófitas , Luz , Citoesqueleto de Actina/fisiologia , Microtúbulos , Cloroplastos/fisiologia , Actinas
8.
Plant Cell Rep ; 42(3): 599-607, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36705704

RESUMO

KEY MESSAGE: By using the organelle glue technique, we artificially manipulated organelle interactions and controlled the plant metabolome at the pathway level. Plant cell metabolic activity changes with fluctuating environmental conditions, in part via adjustments in the arrangement and interaction of organelles. This hints at the potential for designing plants with desirable metabolic activities for food and pharmaceutical industries by artificially controlling the interaction of organelles through genetic modification. We previously developed a method called the organelle glue technique, in which chloroplast-chloroplast adhesion is induced in plant cells using the multimerization properties of split fluorescent proteins. Here, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants in which chloroplasts adhere to each other and performed metabolome analysis to examine the metabolic changes in these lines. In plant cells expressing a construct encoding the red fluorescent protein mCherry targeted to the chloroplast outer envelope by fusion with a signal sequence (cTP-mCherry), chloroplasts adhered to each other and formed chloroplast aggregations. Mitochondria and peroxisomes were embedded in the aggregates, suggesting that normal interactions between chloroplasts and these organelles were also affected. Metabolome analysis of the cTP-mCherry-expressing Arabidopsis shoots revealed significantly higher levels of glycine, serine, and glycerate compared to control plants. Notably, these are photorespiratory metabolites that are normally transported between chloroplasts, mitochondria, and peroxisomes. Together, our data indicate that chloroplast-chloroplast adhesion alters organellar interactions with mitochondria and peroxisomes and disrupts photorespiratory metabolite transport. These results highlight the possibility of controlling plant metabolism at the pathway level by manipulating organelle interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Células Vegetais/metabolismo , Cloroplastos/metabolismo , Peroxissomos/metabolismo , Proteínas de Arabidopsis/genética , Metaboloma
9.
Plant Cell Physiol ; 63(6): 737-743, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35348773

RESUMO

Although many studies on plant growth and development focus on the effects of light, a growing number of studies dissect plant responses to temperature and the underlying signaling pathways. The identity of plant thermosensing molecules (thermosensors) acting upstream of the signaling cascades in temperature responses was elusive until recently. During the past six years, a set of plant thermosensors has been discovered, representing a major turning point in the research on plant temperature responses and signaling. Here, we review these newly discovered plant thermosensors, which can be classified as sensors of warmth or cold. We compare between plant thermosensors and those from other organisms and attempt to define the subcellular thermosensing compartments in plants. In addition, we discuss the notion that photoreceptive thermosensors represent a novel class of thermosensors, the roles of which have yet to be described in non-plant systems.


Assuntos
Plantas , Sensação Térmica , Temperatura Baixa , Desenvolvimento Vegetal , Plantas/genética , Temperatura , Sensação Térmica/fisiologia
10.
Plant J ; 101(5): 1091-1102, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630463

RESUMO

Carotenoids are the most universal and most widespread pigments in nature. They have played pivotal roles in the evolution of photosensing mechanisms in microbes and of vision in animals. Several groups of phytoflagellates developed a photoreceptive organelle called the eyespot apparatus (EA) consisting of two separable components: the eyespot, a cluster of carotenoid-rich globules that acts as a reflector device, and actual photoreceptors for photobehaviors. Unlike other algal eyespots, the eyespot of Euglenophyta lacks reflective properties and is generally considered to act as a shading device for the photoreceptor (paraflagellar body, PFB) for major photomovements. However, the function of the eyespot of Euglenophyta has not yet been fully proven. Here, we report that the blocking carotenoid biosynthesis in Euglena gracilis by suppressing the phytoene synthase gene (crtB) caused a defect in eyespot function resulting in a loss of phototaxis. Raman spectroscopy and transmission electron microscopy suggested that EgcrtB-suppressed cells formed eyespot globules but had a defect in the accumulation of carotenoids in those packets. Motion analysis revealed the loss of phototaxis in EgcrtB-suppressed cells: a defect in the initiation of turning movements immediately after a change in light direction, rather than a defect in the termination of cell turning at the appropriate position due to a loss of the shading effect on the PFB. This study revealed that carotenoids are essential for light perception by the EA for the initiation of phototactic movement by E. gracilis, suggesting one possible photosensory role of carotenoids in the EA for the phototaxis.


Assuntos
Carotenoides/metabolismo , Euglena gracilis/fisiologia , Fototaxia/efeitos da radiação , Euglena gracilis/efeitos da radiação , Euglena gracilis/ultraestrutura , Luz , Microscopia Eletrônica de Transmissão , Organelas/metabolismo , Organelas/ultraestrutura
11.
Langmuir ; 37(5): 1882-1893, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33440939

RESUMO

Among gene delivery systems, peptide-based gene carriers have received significant attention because of their selectivity, biocompatibility, and biodegradability. Since cellular membranes function as a barrier toward exogenous molecules, cell-penetrating peptides (CPPs), which are usually cationic and/or amphiphilic, can serve as efficient carriers to deliver cargo into the cytosol. Here, we examined the interactions of carrier peptides and their DNA complexes with lipid membranes using a quartz crystal microbalance (QCM) and high-speed atomic force microscopy (HS-AFM). The carrier peptides are a 12-residue partial presequence of yeast cytochrome c oxidase subunit IV (Cytcox) and BP100, which are a mitochondria-targeting signal peptide and a CPP, respectively. QCM data showed that BP100 has a higher binding affinity than Cytcox to both plasma membrane- and mitochondrial membrane-mimicking lipid bilayers. The DNA complexes with either Cytcox or BP100 exhibited the same tendency. Furthermore, HS-AFM data demonstrated that the DNA complexes of either peptide can disrupt the lipid membranes, forming larger pores in the case of Cytcox. Our results suggest that the binding affinity of the peptide/DNA complex to the plasma membrane is more critical than its membrane disruption ability in enhancing the cellular uptake of DNA.


Assuntos
Peptídeos Penetradores de Células , Bicamadas Lipídicas , Membrana Celular , DNA/genética , Técnicas de Transferência de Genes
12.
Physiol Plant ; 173(3): 775-787, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102708

RESUMO

Changes in the subcellular localisation of chloroplasts help optimise photosynthetic activity under different environmental conditions. In many plants, this movement is mediated by the blue-light photoreceptor phototropin. A model organism with simple phototropin signalling that allows clear observation of chloroplasts would facilitate the study of chloroplast relocation movement. Here, we examined this process in the simple thalloid liverwort Apopellia endiviifolia. Transverse sections of the thallus tissue showed uniformly developed chloroplasts and no air chambers; these characteristics enable clear observation of chloroplasts and analysis of their movements under a fluorescence stereomicroscope. At 22°C, the chloroplasts moved to the anticlinal walls of cells next to the neighbouring cells in the dark (dark-positioning response), whereas they moved towards weak light (accumulation response) and away from strong light (avoidance response). When the temperature was reduced to 5°C, the chloroplasts moved away from weak light (cold-avoidance response). Hence, both light- and temperature-dependent chloroplast relocation movements occur in A. endiviifolia. Notably, the accumulation, avoidance and cold-avoidance responses were induced under blue-light but not under red-light. These results suggest that phototropin is responsible for chloroplast relocation movement in A. endiviifolia and that the characteristics are similar to those in the model liverwort Marchantia polymorpha. RNA sequencing and Southern blot analysis identified a single copy of the PHOTOTROPIN gene in A. endiviifolia, indicating that a simple phototropin signalling pathway functions in A. endiviifolia. We conclude that A. endiviifolia has great potential as a model system for elucidating the mechanisms of chloroplast relocation movement.


Assuntos
Cloroplastos , Marchantia , Luz , Movimento , Fototropinas/genética
13.
Protein Expr Purif ; 166: 105502, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31546007

RESUMO

Cellouronate is a (1,4)-ß-D-glucuronan prepared by TEMPO-mediated oxidation from regenerated cellulose. We have previously isolated a cellouronate-degrading bacterial strain, Brevundimonas sp. SH203, that produces a cellouronate lyase (ß-1,4-glucuronan lyase, CUL-I). In this study, the gene encoding CUL-I was cloned, and the recombinant enzyme was heterologously expressed in Escherichia coli. The predicted CUL-I protein is composed of 426 amino acid residues and includes a putative 21-amino acid signal peptide. The recombinant CUL-I specifically depolymerized ß-1,4-glycoside linkages of cellouronate, and its mode of action was endo-type, like the native CUL-I. Sequence analysis showed CUL-I has no similarity to previously known polysaccharide lyases (PLs), indicating that CUL-I should be classified into a novel PL family.


Assuntos
Caulobacteraceae/genética , Polissacarídeo-Liases/genética , Proteínas Recombinantes/genética , Sequência de Aminoácidos , Sequência de Bases , Caulobacteraceae/enzimologia , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Glicosídeos/química , Glicosídeos/metabolismo , Oxirredução , Polissacarídeo-Liases/química , Polissacarídeo-Liases/classificação , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação
14.
Biomacromolecules ; 21(1): 95-103, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31496226

RESUMO

Plant cell walls consist mostly of crystalline cellulose fibrils embedded in a matrix of complex polysaccharides, but information on their morphological features has generally been limited to that obtained from nonliving plant specimens. Here, we characterized the primary cell wall of a living plant cell (from the tobacco BY-2 suspension culture) at nanometer resolution using high-speed atomic force microscopy and at micrometer resolution using confocal laser scanning microscopy. Our results showed aligned and disordered cellulose fibrils coexisting in the outermost layer of the cell wall. We investigated the orientation of the aligned cellulose fibrils in the outer lamellae of the cell wall of living plant cells after removing cellulose, hemicellulose, and pectin by enzymatic degradation to make the cellulose fibrils more visible and, accordingly, to reveal the structure of the nanoachitecture formed by these fibrils within the cell wall. We observed that the cellulose fibrils in the outermost layer were usually oriented close to the direction of cell growth, whereas the orientation of the cellulose fibrils in the successive lamellae further inward changed randomly. Such organization should be crucial to render the plant cell wall both rigid and flexible. This finding provides insight not only into the structure of the functional plant cell wall but also into its growth mechanism.


Assuntos
Parede Celular/ultraestrutura , Microscopia de Força Atômica/métodos , Nicotiana/citologia , Células Vegetais/metabolismo , Parede Celular/metabolismo , Celulose/química , Celulose/metabolismo , Microscopia Confocal , Pectinas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
15.
Biomacromolecules ; 21(10): 4116-4122, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786535

RESUMO

Oligoproline-containing peptides, GPPG and GPPPG, were designed and developed for nanoparticle-based delivery platforms, and their degradation is triggered by reactive oxygen species (ROS). Peptides containing more than two consecutive proline residues were found to be cleavable in 1 mM of ROS generated by hydrogen peroxide in the presence of CuSO4, which corresponds to plant cells under photosynthetic conditions. The nanoparticles formed by the peptides were also ROS-degradable and efficiently encapsulated a hydrophobic dye. The hydrophobic cargo in the peptide nanoparticles was released into the cytosol of plant leaf cells in response to the ROS generated in chloroplasts by light irradiation. Furthermore, local laser irradiation enabled the peptide nanoparticles to release their cargo at only the irradiated cell, promising site-selective cargo release triggered by irradiation.


Assuntos
Nanopartículas , Peróxido de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Espécies Reativas de Oxigênio
16.
Proc Natl Acad Sci U S A ; 114(34): 9206-9211, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784810

RESUMO

Living organisms detect changes in temperature using thermosensory molecules. However, these molecules and/or their mechanisms for sensing temperature differ among organisms. To identify thermosensory molecules in plants, we investigated chloroplast positioning in response to temperature changes and identified a blue-light photoreceptor, phototropin, that is an essential regulator of chloroplast positioning. Based on the biochemical properties of phototropin during the cellular response to light and temperature changes, we found that phototropin perceives temperature based on the temperature-dependent lifetime of the photoactivated chromophore. Our findings indicate that phototropin perceives both blue light and temperature and uses this information to arrange the chloroplasts for optimal photosynthesis. Because the photoactivated chromophore of many photoreceptors has a temperature-dependent lifetime, a similar temperature-sensing mechanism likely exists in other organisms. Thus, photoreceptors may have the potential to function as thermoreceptors.


Assuntos
Hepatófitas/metabolismo , Hepatófitas/efeitos da radiação , Fototropinas/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Hepatófitas/genética , Luz , Fotossíntese , Fototropinas/genética , Proteínas de Plantas/genética , Temperatura
17.
Biochem Biophys Res Commun ; 503(1): 235-241, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29885839

RESUMO

Numerous studies have used genome-editing modules such as CRISPR-Cas9 for site-directed mutagenesis; however, evaluation of the efficiency of these modules remains a time-consuming process. Here, we report the development of SKL-mediated Peroxisome Targeting Imaging (SKLPT imaging), an efficient in vivo pre-evaluation method based on the change in subcellular localization of a fluorescent protein. In this method, frameshifts resulting from successful editing cause the fusion of green fluorescent protein to the peroxisome localization signal Serine-Lysine-Leucine (SKL). Using SKLPT imaging, we pre-evaluated three CRISPR-Cas9 modules in vivo at the single-cell level, and then efficiently mutagenized the liverwort (Marchantia polymorpha) genome using a high-efficiency module.


Assuntos
Edição de Genes/métodos , Proteínas de Fluorescência Verde/genética , Marchantia/genética , Sinais de Orientação para Peroxissomos/genética , Sistemas CRISPR-Cas , Genoma de Planta , Proteínas de Fluorescência Verde/metabolismo , Marchantia/metabolismo , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Biomacromolecules ; 19(5): 1582-1591, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29601191

RESUMO

Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.


Assuntos
DNA/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Sinais Direcionadores de Proteínas , Transfecção/métodos , Arabidopsis/genética , DNA/química , Nicotiana/genética
19.
J Plant Res ; 130(4): 779-789, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28421371

RESUMO

Chloroplast photorelocation movement, well-characterized light-induced response found in various plant species from alga to higher plants, is an important phenomenon for plants to increase photosynthesis efficiency and avoid photodamage. The signal for chloroplast accumulation movement connecting the blue light receptor, phototropin, and chloroplasts remains to be identified, although the photoreceptors and the mechanism of movement via chloroplast actin filaments have now been revealed in land plants. The characteristics of the signal have been found; the speed of signal transfer is about 1 µm min-1 and that the signal for the accumulation response has a longer life and is transferred a longer distance than that of the avoidance response. Here, to collect the clues of the unknown signal substances, we studied the effect of temperature on the speed of signal transmission using the fern Adiantum capillus-veneris and found the possibility that the mechanism of signal transfer was not dependent on the simple diffusion of a substance; thus, some chemical reaction must also be involved. We also found new insights of signaling substances, such that microtubules are not involved in the signal transmission, and that the signal could even be transmitted through the narrow space between chloroplasts and the plasma membrane.


Assuntos
Adiantum/fisiologia , Fototropinas/metabolismo , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Adiantum/efeitos da radiação , Adiantum/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Células Germinativas Vegetais , Luz , Fotossíntese , Fototropinas/genética , Temperatura
20.
J Plant Res ; 130(6): 1061-1070, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28634853

RESUMO

Under low-light conditions, chloroplasts localize along periclinal cell walls at temperatures near 20 °C, but they localize along anticlinal cell walls near 5 °C. This phenomenon is known as the cold-positioning response. We previously showed that chloroplasts move as aggregates rather than individually during the cold-positioning response in the fern Adiantum capillus-veneris. This observation suggested that chloroplasts physically interact with each other during the cold-positioning response. However, the physiological processes underlying chloroplast aggregation are unclear. In this report, we characterized chloroplast aggregation during the cold-positioning response in the liverwort Marchantia polymorpha. Confocal laser microscopy observations of transgenic liverwort plants expressing a fluorescent fusion protein that localizes to the chloroplast outer envelope membrane (OEP7-Citrine) showed that neighboring chloroplast membranes did not fuse during the cold-positioning response. Transmission electron microscopy analysis revealed that a distance of at least 10 nm was maintained between neighboring chloroplasts during aggregation. These results indicate that aggregated chloroplasts do not fuse, but maintain a distance of at least 10 nm from each other during the cold-positioning response.


Assuntos
Cloroplastos/fisiologia , Marchantia/fisiologia , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Cloroplastos/genética , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Temperatura Baixa , Luz , Marchantia/genética , Marchantia/efeitos da radiação , Marchantia/ultraestrutura , Microscopia de Fluorescência , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa