Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 21(1): 573-583, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32939181

RESUMO

Two highly active and stable Pd-based intermetallic nanocrystals with early d-metals Pd3Ti and Pd3Zr have been developed. The nanocrystals are synthesized by co-reduction of the respective salts of Pd and Ti/Zr. Hard X-ray photoemission Spectroscopy (HAXPES) analysis of the nanocrystals indicates that the electronic properties of Pd are modified significantly, as evident from the lowering of the d-band center of Pd. The intermetallic nanocrystals dispersed in Vulcan carbon, Pd3Ti/C and Pd3Zr/C, exhibit improved electrocatalytic activity towards methanol and ethanol oxidation in an alkaline medium (0.5 M KOH), compared to those of commercially available catalysts such as Pd/C, Pt/C, and Pt3Sn/C. In addition, Pd3Ti/C and Pd3Zr/C show significantly higher activity towards the oxidation of formic acid in an acidic medium (0.5 M H2SO4), compared to those of Pd/C and Pt/C. The modification of the d-band center of Pd as a result of the alloying of Pd with the early d-metals Ti and Zr may be responsible for the enhanced catalytic activity.

2.
Phys Chem Chem Phys ; 18(42): 29607-29615, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27752660

RESUMO

CO poisoning of Pt catalysts is one of the major challenges to the commercialization of proton exchange membrane fuel cells. One promising solution is to develop CO-tolerant Pt-based catalysts. A facilely synthesized Pt/FeOx catalyst exhibited outstanding CO tolerance in the oxidation of H2 and electrochemical CO stripping. Light-off temperature of H2O formation over Pt/FeOx was achieved even below 30 °C in the presence of 3000 ppm CO at a space velocity of 18 000 mL g-1cat h-1. For the electrochemical oxidation of CO, the onset and peak potentials decreased by 0.17 V and 0.10 V, respectively, in comparison with those of commercial Pt/C. More importantly, by a combination of hard X-ray photoemission spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies it was found that the decreased electron density of Pt in Pt/FeOx enhanced the mobility of adsorbed CO, suppressed Pt-CO bonding and significantly increased the CO tolerance of Pt/FeOx.

3.
Phys Chem Chem Phys ; 18(8): 5932-7, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26352924

RESUMO

Tin-dioxide nanofacets (SnO2 NFs) are crystal-engineered so that oxygen defects on the maximal {113} surface are long-range ordered to give rise to a non-occupied defect band (DB) in the bandgap. SnO2 NFs-supported platinum-nanoparticles exhibit an enhanced ethanol-electrooxidation activity due to the promoted charge-transport via the DB at the metal-semiconductor interface.

4.
Phys Chem Chem Phys ; 17(7): 4879-87, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25271906

RESUMO

The surface electronic structure and CO-oxidation activity of Pt and Pt alloys, Pt3T (T = Ti, Hf, Ta, Pt), were investigated. At temperatures below 538 K, the CO-oxidation activities of Pt and Pt3T increased in the order Pt < Pt3Ti < Pt3hHf < Pt3Ta. The center-of-gravity of the Pt d-band (the d-band center) of Pt and Pt3T was theoretically calculated to follow the trend Pt3Ti < Pt3Ta < Pt3Hf < Pt. The CO-oxidation activity showed a volcano-type dependence on the d-band center, where Pt3Ta exhibited a maximum in activity. Theoretical calculations demonstrated that the adsorption energy of CO on the catalyst surface monotonically decreases with the lowering of the d-band center because of diminished hybridization of the surface d-band and the lowest-unoccupied molecular orbital (LUMO) of CO. The observed volcano-type correlation between the d-band center and the CO oxidation activity is rationalized in terms of the CO adsorption energy, which counterbalances the surface coverage by CO and the rate of CO oxidation.

5.
Small ; 7(24): 3452-7, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22052770

RESUMO

Optimization of pore diameter, the placement of nanoparticles, and the transmission of surface-enhanced Raman scattering (SERS) substrates are found to be very critical for achieving high SERS activity in porous alumina-membrane-based substrates. SERS substrates with a pore diameter of 355 nm incorporating silver nanoparticles show very high SERS activity with enhancement factors of 10(10) .


Assuntos
Nanoporos , Prata/química , Análise Espectral Raman , Eletricidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoporos/ultraestrutura , Porosidade , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 6(4): 2459-70, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24494630

RESUMO

Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional Langmuir adsorption behavior. FTIR analysis suggested that both R6G and DA molecules predominantly adsorb on the hydrophilic oxidized regions of the GO surface. Thus, when R6G and DA compounds were adsorbed from mixed solution, competitive adsorption was observed around the oxygen-containing groups of GO sheets, which resulted in partial desorption of R6G molecules from the surface of GO into the solution. The desorbed R6G molecules can be monitored by fluorescence change in solution and was dependent on the DA concentration. We suggest that the efficient competitive adsorption of different strongly bound bioanalytes onto GO-dye complex can be used for the development of sensitive and selective colorimetric biosensors.


Assuntos
Dopamina/química , Grafite/química , Rodaminas/química , Adsorção , Ligação Competitiva , Óxidos/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 6(18): 16124-30, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25184479

RESUMO

Although compositional tuning of metal nanoparticles (NPs) has been extensively investigated, possible control of the catalytic performance through bulk-structure tuning is surprisingly overlooked. Here we report that the bulk structure of intermetallic ZrPt3 NPs can be engineered by controlled annealing and their catalytic performance is significantly enhanced as the result of bulk-structural transformation. Chemical reduction of organometallic precursors yielded the desired ZrPt3 NPs with a cubic FCC-type structure (c-ZrPt3 NPs). The c-ZrPt3 NPs were then transformed to a different phase of ZrPt3 with a hexagonal structure (h-ZrPt3 NPs) by annealing at temperatures between 900 and 1000 °C. The h-ZrPt3 NPs exhibited higher catalytic activity and long-term stability than either the c-ZrPt3 NPs or commercial Pt/C NPs toward the electro-oxidation of ethanol. Theoretical calculations have elucidated that the enhanced activity of the h-ZrPt3 NPs is attributed to the increased surface energy, whereas the stability of the catalyst is retained by the lowered bulk-free-energy.

8.
ACS Appl Mater Interfaces ; 6(6): 3790-3, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24611469

RESUMO

A mixed-valence tin oxide, (Sn(2+))2(Sn(4+))O4, was synthesized via a hydrothermal route. The Sn3O4 material consisted of highly crystalline {110} flexes. The Sn3O4 material, when pure platinum (Pt) was used as a co-catalyst, significantly catalyzed water-splitting in aqueous solution under illumination of visible light (λ > 400 nm), whereas neither Sn(2+)O nor Sn(4+)O2 was active toward the reaction. Theoretical calculations have demonstrated that the co-existence of Sn(2+) and Sn(4+) in Sn3O4 leads to a desirable band structure for photocatalytic hydrogen evolution from water solution. Sn3O4 has great potential as an abundant, cheap, and environmentally benign solar-energy conversion catalyst.

9.
Chem Commun (Camb) ; 50(98): 15553-6, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25357137

RESUMO

Skeletal gold nanocages (Au NCs) are synthesized and coated with TiO2 layers (TiO2-Au NCs). The TiO2-Au NCs exhibit enhanced photodecomposition activity toward acetaldehyde under visible light (>400 nm) illumination because hot electrons are generated over the Au NCs by local surface plasmon resonance (LSPR) and efficiently transported across the metal/semiconductor interface via the defect states of TiO2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa