RESUMO
The phenylpropene volatiles dillapiole and apiole impart one of the characteristic aromas of dill (Anethum graveolens) weeds. However, very few studies have been conducted to investigate the chemical composition of volatile compounds from different developmental stages and plant parts of A. graveolens. In this study, we examined the distribution of volatile phenylpropenes, including dillapiole, in dill plants at various developmental stages. We observed that young dill seedlings accumulate high levels of dillapiole and apiole, whereas a negligible proportion was found in the flowering plants and dry seeds. Based on transcriptomics and co-expression approaches with phenylpropene biosynthesis genes, we identified dill cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase 1 (AgOMT1), an enzyme that can convert 6- and 2-hydroxymyristicin to dillapiole and apiole, respectively, via the methylation of the ortho-hydroxy group. The AgOMT1 protein shows an apparent Km value of 3.5 µm for 6-hydroxymyristicin and is 75% identical to the anise (Pimpinella anisum) O-methyltransferase (PaAIMT1) that can convert isoeugenol to methylisoeugenol via methylation of the hydroxy group at the para-position of the benzene ring. AgOMT1 showed a preference for 6-hydroxymyristicin, whereas PaAIMT1 displayed a large preference for isoeugenol. In vitro mutagenesis experiments demonstrated that substituting only a few residues can substantially affect the substrate specificity of these enzymes. Other plants belonging to the Apiaceae family contained homologous O-methyltransferase (OMT) proteins highly similar to AgOMT1, converting 6-hydroxymyristicin to dillapiole. Our results indicate that apiaceous phenylpropene OMTs with ortho-methylating activity evolved independently of phenylpropene OMTs of other plants and the enzymatic function of AgOMT1 and PaAIMT1 diverged recently.
Assuntos
Anethum graveolens , Anethum graveolens/química , Anethum graveolens/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismoRESUMO
Plants produce â¼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.
Assuntos
Angelica/genética , Citrus paradisi/genética , Evolução Molecular , Furocumarinas/biossíntese , Proteínas de Plantas/genética , Prenilação , Angelica/metabolismo , Citrus paradisi/metabolismo , Filogenia , Proteínas de Plantas/metabolismoRESUMO
KEY MESSAGE: Hydrolysis of 1-octen-3-yl ß-primeveroside implemented by a system with high structure-specificity is accountable for the rapid formation of 1-octen-3-ol from soybean leaves after mechanical wounding. 1-Octen-3-ol is a volatile compound ubiquitous in fungi; however, a subset of plant species also has the ability to form 1-octen-3-ol. Owing to its volatile nature, it has been anticipated that 1-octen-3-ol is associated with the effort of the emitter to control the behavior of the surrounding organisms; however, its ecological significance and the enzymes involved in its biosynthesis have not been fully elucidated, particularly in plants. We previously found that soybean (Glycine max) seeds contain 1-octen-3-yl ß-primeveroside (pri). To elucidate the physiological significance and the biosynthesis of 1-octen-3-ol in plants, changes in the amount of 1-octen-3-yl pri during development of soybean plants was examined. A high 1-octen-3-yl pri level was found in young developing green organs, such as young leaves and sepals. Treatment of soybean leaves with methyl jasmonates resulted in a significant increase in the amount of 1-octen-3-yl pri; suggesting its involvement in defense responses. Although 1-octen-3-ol was below the detection limit in intact soybean leaves, mechanical damage to the leaves caused rapid hydrolysis of almost all 1-octen-3-yl pri to liberate volatile 1-octen-3-ol. Under the same conditions, the other glycosides, including isoflavone glycoside and linalool diglycoside, were hardly hydrolyzed. Therefore, the enzyme system to liberate aglycone from glycosides in soybean leaves should have strict substrate specificity. 1-Octen-3-yl pri might function as a storage form of volatile 1-octen-3-ol for immediate response against stresses accompanying tissue wounding.
Assuntos
Glycine max , Folhas de Planta , Glicosídeos , OctanóisRESUMO
The liverwort Marchantia polymorpha possesses oil bodies in idioblastic oil body cells scattered in its thallus. Oil bodies are subcellular organelles in which specific sesquiterpenes and bisbibenzyls are accumulated. Therefore, a specialized system for the biosynthesis and accumulation of these defense compounds specifically in oil bodies has been implied. A recent study on M. polymorpha genome sequencing revealed 10 genes that shared high similarities with fungal-type terpene synthases (TPSs). Eight of these fungal-type TPS-like genes in M. polymorpha (MpFTPSL1-6, -9 and -10) are located within a 376-kb stretch on chromosome 6 and share similarities of over 94% at the nucleotide level. Therefore, these genes have likely originated from recent gene duplication events. The expression of a subset of MpFTPSLs was induced under non-axenic growth on vermiculite, which increased the amounts of sesquiterpenes and number of oil bodies. The tdTomato fluorescent protein-based in-fusion reporter assay with MpFTPSL2 promoter revealed fluorescent signals specifically in oil body cells of the thallus, indicating that MpFTPSL2 functions in oil body cells. Recombinant MpFTPSL2 expression in Escherichia coli led to sesquiterpene synthesis from farnesyl pyrophosphate. Moreover, suppression of a subset of MpFTPSLs through RNA interference reduced sesquiterpene accumulation in thalli grown on vermiculite. Taken together, these results suggest that at least a subset of MpFTPSLs is involved in sesquiterpene synthesis in oil body cells.
Assuntos
Alquil e Aril Transferases/metabolismo , Gotículas Lipídicas/metabolismo , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Genes de Plantas/genética , Marchantia/citologia , Marchantia/enzimologia , Marchantia/genética , Proteínas de Plantas/genéticaRESUMO
Several soybean (Glycine max) germplasms, such as Nishiyamahitashi 98-5 (NH), have an intense seaweed-like flavor after cooking because of their high seed S-methylmethionine (SMM) content. In this study, we compared the amounts of amino acids in the phloem sap, leaves, pods, and seeds between NH and the common soybean cultivar Fukuyutaka. This revealed a comparably higher SMM content alongside a higher free Met content in NH seeds, suggesting that the SMM-hyperaccumulation phenotype of NH soybean was related to Met metabolism in seeds. To investigate the molecular mechanism behind SMM hyperaccumulation, we examined the phenotype-associated gene locus in NH plants. Analyses of the quantitative trait loci in segregated offspring of the cross between NH and the common soybean cultivar Williams 82 indicated that one locus on chromosome 10 explains 71.4% of SMM hyperaccumulation. Subsequent fine-mapping revealed that a transposon insertion into the intron of a gene, Glyma.10g172700, is associated with the SMM-hyperaccumulation phenotype. The Glyma.10g172700-encoded recombinant protein showed Met-γ-lyase (MGL) activity in vitro, and the transposon-insertion mutation in NH efficiently suppressed Glyma.10g172700 expression in developing seeds. Exogenous administration of Met to sections of developing soybean seeds resulted in transient increases in Met levels, followed by continuous increases in SMM concentrations, which was likely caused by Met methyltransferase activity in the seeds. Accordingly, we propose that the SMM-hyperaccumulation phenotype is caused by suppressed MGL expression in developing soybean seeds, resulting in transient accumulation of Met, which is converted into SMM to avoid the harmful effects caused by excess free Met.
Assuntos
Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Glycine max/genética , Glycine max/metabolismo , Metionina/genética , Metionina/metabolismo , Sementes/genética , Sementes/metabolismo , Genes de Plantas , Variação Genética , Genótipo , Fenótipo , Folhas de Planta/metabolismo , Locos de Características Quantitativas , Vitamina U/metabolismoRESUMO
Cinnamic acids are widely distributed in plants, including crops for human use, and exhibit a variety of activities that are beneficial to human health. They also occupy a pivotal position in the biosynthesis of phenylpropanoids such as lignins, anthocyanins, flavonoids, and coumarins. In this context, deuterium-labeled cinnamic acids have been used as tracers and internal standards in food and medicinal chemistry as well as plant biochemistry. Therefore, a concise synthesis of deuterium-labeled cinnamic acids would be highly desirable. In this study, we synthesized deuterium-labeled cinnamic acids using readily available deuterium sources. We also investigated a hydrogen-deuterium exchange reaction in an ethanol-d1 /Et3 N system. This method can introduce deuterium atoms at the ortho and para positions of the phenolic hydroxy groups as well as at the C-2 position of alkyl cinnamates and is applicable to various phenolic compounds. Using the synthesized labeled compounds, we demonstrated that the benzenoid volatiles, such as 4-methoxybenzaldehyde, in the scent of the flowers of the Japanese loquat Eriobotrya japonica are biosynthesized from phenylalanine via cinnamic and 4-coumaric acids. This study provides easy access to a variety of deuterium-labeled (poly)phenols, as well as to useful tools for studies of the metabolism of cinnamic acids in living systems.
Assuntos
Cinamatos/química , Deutério/química , Eriobotrya/química , Compostos Orgânicos Voláteis/metabolismo , Eriobotrya/metabolismo , Flores/química , Flores/metabolismo , Fenóis/química , Compostos Orgânicos Voláteis/químicaRESUMO
Field studies have shown that plants growing next to herbivore-infested plants acquire higher resistance to herbivore damage. This increased resistance is partly due to regulation of plant gene expression by volatile organic compounds (VOCs) released by plants that sense environmental challenges such as herbivores. The molecular basis for VOC sensing in plants, however, is poorly understood. Here, we report the identification of TOPLESS-like proteins (TPLs) that have VOC-binding activity and are involved in VOC sensing in tobacco. While screening for volatiles that induce stress-responsive gene expression in tobacco BY-2 cells and tobacco plants, we found that some sesquiterpenes induce the expression of stress-responsive genes. These results provided evidence that plants sense these VOCs and motivated us to analyze the mechanisms underlying volatile sensing using tobacco as a model system. Using a pulldown assay with caryophyllene derivative-linked beads, we identified TPLs as transcriptional co-repressors that bind volatile caryophyllene analogs. Overexpression of TPLs in cultured BY-2 cells or tobacco leaves reduced caryophyllene-induced gene expression, indicating that TPLs are involved in the responses to caryophyllene analogs in tobacco. We propose that unlike animals, which use membrane receptors for sensing odorants, a transcriptional co-repressor plays a role in sensing and mediating VOC signals in plant cells.
Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana , Proteínas de Plantas , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Transcrição Gênica/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismoRESUMO
Green leaf volatiles (GLVs), including six-carbon (C6) aldehydes, alcohols, and esters, are formed when plant tissues are damaged. GLVs play roles in direct plant defense at wound sites, indirect plant defense via the attraction of herbivore predators, and plant-plant communication. GLV components provoke distinctive responses in their target recipients; therefore, the control of GLV composition is important for plants to appropriately manage stress responses. The reduction of C6-aldehydes into C6-alcohols is a key step in the control of GLV composition and also is important to avoid a toxic buildup of C6-aldehydes. However, the molecular mechanisms behind C6-aldehyde reduction remain poorly understood. In this study, we purified an Arabidopsis (Arabidopsis thaliana) NADPH-dependent cinnamaldehyde and hexenal reductase encoded by At4g37980, named here CINNAMALDEHYDE AND HEXENAL REDUCTASE (CHR). CHR T-DNA knockout mutant plants displayed a normal growth phenotype; however, we observed significant suppression of C6-alcohol production following partial mechanical wounding or herbivore infestation. Our data also showed that the parasitic wasp Cotesia vestalis was more attracted to GLVs emitted from herbivore-infested wild-type plants compared with GLVs emitted from chr plants, which corresponded with reduced C6-alcohol levels in the mutant. Moreover, chr plants were more susceptible to exogenous high-dose exposure to (Z)-3-hexenal, as indicated by their markedly lowered photosystem II activity. Our study shows that reductases play significant roles in changing GLV composition and, thus, are important in avoiding toxicity from volatile carbonyls and in the attraction of herbivore predators.
Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hexobarbital/metabolismo , Oxirredutases/metabolismo , Compostos Orgânicos Voláteis/química , Oxirredutases do Álcool/genética , Álcoois/química , Álcoois/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ésteres/química , Ésteres/metabolismo , Mutação , Oxirredutases/genética , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Compostos Orgânicos Voláteis/metabolismoRESUMO
4-Coumaroyl-CoA ligase (4CL) is ubiquitous in the plant kingdom, and plays a central role in the biosynthesis of phenylpropanoids such as lignins, flavonoids, and coumarins. 4CL catalyzes the formation of the coenzyme A thioester of cinnamates such as 4-coumaric, caffeic, and ferulic acids, and the regulatory position of 4CL in the phenylpropanoid pathway renders the enzyme an attractive target that controls the composition of phenylpropanoids in plants. In this study, we designed and synthesized mechanism-based inhibitors for 4CL in order to develop useful tools for the investigation of physiological functions of 4CL and chemical agents that modulate plant growth with the ultimate goal to produce plant biomass that exhibits features that are beneficial to humans. The acylsulfamide backbone of the inhibitors in this study was adopted as a mimic of the acyladenylate intermediates in the catalytic reaction of 4CL. These acylsulfamide inhibitors and the important synthetic intermediates were fully characterized using two-dimensional NMR spectroscopy. Five 4CL proteins with distinct substrate specificity from four plant species, i.e., Arabidopsis thaliana, Glycine max (soybean), Populus trichocarpa (poplar), and Petunia hybrida (petunia), were used to evaluate the inhibitory activity, and the half-maximum inhibitory concentration (IC50) of each acylsulfamide in the presence of 4-coumaric acid (100⯵M) was determined as an index of inhibitory activity. The synthetic acylsulfamides used in this study inhibited the 4CLs with IC50 values ranging from 0.10 to 722⯵M, and the IC50 values of the most potent inhibitors for each 4CL were 0.10-2.4⯵M. The structure-activity relationship observed in this study revealed that both the presence and the structure of the acyl group of the synthetic inhibitors strongly affect the inhibitory activity, and indicates that 4CL recognizes the acylsulfamide inhibitors as acyladenylate mimics.
Assuntos
Adenosina/análogos & derivados , Adenosina/química , Proteínas de Arabidopsis/antagonistas & inibidores , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/química , Sulfonamidas/química , Adenosina/síntese química , Arabidopsis/enzimologia , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Petunia/enzimologia , Populus/enzimologia , Glycine max/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfonamidas/síntese químicaRESUMO
Plants synthesize volatile compounds to attract pollinators. The volatiles emitted by flowers are often complex mixtures of organic compounds; pollinators are capable of distinctly recognizing different volatile compounds. Plants also produce volatile compounds to protect themselves against herbivores and pathogens. Some of the volatile compounds produced in floral and vegetative tissues are toxic to insects and microbes. To adapt changes in the environment, plants have evolved the ability to synthesize a unique set of volatiles. Intensive studies have identified and characterized the enzymes responsible for the formation of plant volatiles. In particular, many biosynthetic genes have been isolated and their enzymatic functions have been proposed. This review describes how plants have evolved the biosynthetic pathways leading to the formation of green leaf volatiles and phenylpropene volatiles.
Assuntos
Enzimas/metabolismo , Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/metabolismo , Plantas/enzimologia , Compostos Orgânicos Voláteis/químicaRESUMO
MAIN CONCLUSION: Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 µM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.
Assuntos
Acroleína/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Inativação Metabólica , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/isolamento & purificação , Homologia de Sequência de AminoácidosRESUMO
Most terrestrial plants form green leaf volatiles (GLVs), which are mainly composed of six-carbon (C6) compounds. In our effort to study the distribution of the ability of lipoxygenase (LOX) to form GLVs, we found that a liverwort, Marchantia polymorpha, formed n-hexanal and (Z)-3-hexenal. Some LOXs execute a secondary reaction to form short chain volatiles. One of the LOXs from M. polymorpha (MpLOX7) oxygenized arachidonic and α-linolenic acids at almost equivalent efficiency and formed C6-aldehydes during its catalysis; these are likely formed from hydroperoxides of arachidonic and α-linolenic acids, with a cleavage of the bond between carbon at the base of the hydroperoxy group and carbon of double bond, which is energetically unfavorable. These lines of evidence suggest that one of the LOXs in liverwort employs an unprecedented reaction to form C6 aldehydes as by-products of its reaction with fatty acid substrates.
Assuntos
Aldeídos/metabolismo , Ácido Araquidônico/metabolismo , Lipoxigenase/metabolismo , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Ácido alfa-Linolênico/metabolismo , Sequência de Aminoácidos , Biocatálise , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Peróxidos Lipídicos/metabolismo , Lipoxigenase/genética , Marchantia/química , Marchantia/classificação , Filogenia , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metabolismo Secundário , Alinhamento de Sequência , TermodinâmicaRESUMO
Most 'green' plants form green leaf volatiles (GLVs). GLVs are a familiar plant secondary metabolite, but knowledge of their physiological and ecological functions is limited. GLV formation is tightly suppressed when plant tissues are intact, but upon mechanical wounding, herbivore attack, or abiotic stresses, GLVs are formed rapidly, within seconds or minutes. Thus, this may be an important system for defense responses, allowing plants to protect themselves from damage as soon as possible. Because GLV formation in the natural environment is roughly related to the degree of stress in the plant life, sensing the amount of GLVs in the atmosphere might allow plants to recognize their surroundings. Because some plants respond to GLVs, they may communicate with GLVs. GLVs that contain α,ß-unsaturated carbonyl groups might activate signaling systems regulated under the redox state of plant cells. Plasma membranes would also be targets of interactions with GLVs. Additionally, the metabolism of GLVs in plant cells after absorption from the atmosphere could also be classified as a plant-plant interaction.
Assuntos
Folhas de Planta/metabolismo , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismoRESUMO
MAIN CONCLUSION: p -Methoxybenzoic acid carboxyl methyltransferase (MBMT) was isolated from loquat flowers. MBMT displayed high similarity to jasmonic acid carboxyl methyltransferases, but exhibited high catalytic activity to form methyl p -methoxybenzoate from p -methoxybenzoic acid. Volatile benzenoids impart the characteristic fragrance of loquat (Eriobotrya japonica) flowers. Here, we report that loquat produces methyl p-methoxybenzoate, along with other benzenoids, as the flowers bloom. Although the adaxial side of flower petals is covered with hairy trichomes, the trichomes are not the site of volatile benzenoid formation. Here we identified four carboxyl methyltransferase (EjMT1 to EjMT4) genes from loquat and functionally characterized EjMT1 which we found to encode a p-methoxybenzoic acid carboxyl methyltransferase (MBMT); an enzyme capable of converting p-methoxybenzoic acid to methyl p-methoxybenzoate via methylation of the carboxyl group. We found that transcript levels of MBMT continually increased throughout the flower development with peak expression occurring in fully opened flowers. Recombinant MBMT protein expressed in Escherichia coli showed the highest substrate preference toward p-methoxybenzoic acid with an apparent K m value of 137.3 µM. In contrast to benzoic acid carboxyl methyltransferase (BAMT) and benzoic acid/salicylic acid carboxyl methyltransferase, MBMT also displayed activity towards both benzoic acid and jasmonic acid. Phylogenetic analysis revealed that loquat MBMT forms a monophyletic group with jasmonic acid carboxyl methyltransferases (JMTs) from other plant species. Our results suggest that plant enzymes with same BAMT activity have evolved independently.
Assuntos
Eriobotrya/enzimologia , Éteres de Hidroxibenzoatos/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Eriobotrya/genética , Flores/enzimologia , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Análise de Sequência de DNARESUMO
A large portion of the volatile organic compounds emitted by plants are oxygenated to yield reactive carbonyl species, which have a big impact on atmospheric chemistry. Deposition to vegetation driven by the absorption of reactive carbonyl species into plants plays a major role in cleansing the atmosphere, but the mechanisms supporting this absorption have been little examined. Here, we performed model experiments using methacrolein (MACR), one of the major reactive carbonyl species formed from isoprene, and tomato (Solanum lycopersicum) plants. Tomato shoots enclosed in a jar with MACR vapor efficiently absorbed MACR. The absorption efficiency was much higher than expected from the gas/liquid partition coefficient of MACR, indicating that MACR was likely metabolized in leaf tissues. Isobutyraldehyde, isobutyl alcohol, and methallyl alcohol (MAA) were detected in the headspace and inside tomato tissues treated with MACR vapor, suggesting that MACR was enzymatically reduced. Glutathione (GSH) conjugates of MACR (MACR-GSH) and MAA (MAA-GSH) were also detected. MACR-GSH was essentially formed through spontaneous conjugation between endogenous GSH and exogenous MACR, and reduction of MACR-GSH to MAA-GSH was likely catalyzed by an NADPH-dependent enzyme in tomato leaves. Glutathionylation was the metabolic pathway most responsible for the absorption of MACR, but when the amount of MACR exceeded the available GSH, MACR that accumulated reduced photosynthetic capacity. In an experiment simulating the natural environment using gas flow, MACR-GSH and MAA-GSH accumulation accounted for 30% to 40% of the MACR supplied. These results suggest that MACR metabolism, especially spontaneous glutathionylation, is an essential factor supporting MACR absorption from the atmosphere by tomato plants.
Assuntos
Acroleína/análogos & derivados , Butadienos/química , Hemiterpenos/química , Pentanos/química , Solanum lycopersicum/química , Compostos Orgânicos Voláteis/química , Absorção Fisico-Química/fisiologia , Acroleína/química , Acroleína/metabolismo , Biodegradação Ambiental , Glutationa/química , Glutationa/metabolismo , Solanum lycopersicum/metabolismo , Oxirredução , Oxigênio/química , Fotossíntese , Folhas de Planta/química , Compostos Orgânicos Voláteis/metabolismoRESUMO
Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.
Assuntos
Dimetilaliltranstransferase/metabolismo , Furocumarinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Petroselinum/enzimologia , Ruta/enzimologia , Sequência de Bases , Cumarínicos/química , Cumarínicos/metabolismo , Dimetilaliltranstransferase/genética , Furocumarinas/química , Regulação da Expressão Gênica de Plantas , Genes Reporter , Dados de Sequência Molecular , Cebolas/citologia , Cebolas/genética , Cebolas/metabolismo , Especificidade de Órgãos , Petroselinum/genética , Petroselinum/efeitos da radiação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Ruta/genética , Ruta/efeitos da radiação , Análise de Sequência de DNA , Especificidade por Substrato , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/efeitos da radiação , Raios Ultravioleta , Umbeliferonas/química , Umbeliferonas/metabolismoRESUMO
MAIN CONCLUSION: Allene oxide synthases (AOSs) were isolated from liverworts and charophytes. These AOSs exhibited enzymatic properties similar to those of angiosperms but formed a distinct phylogenetic clade. Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) mediate the formation of precursors of jasmonates and carbon-six volatiles, respectively. AOS and HPL utilize fatty acid hydroperoxides and belong to the plant cytochrome P450 74 (CYP74) family that mediates plant defense against herbivores, pathogens, or abiotic stresses. Although members of the CYP74 family have been reported in mosses and other species, the evolution and function of multiple CYP74 genes in plants remain elusive. Here, we show that the liverwort Marchantia polymorpha belongs to a basal group in the evolution of land plants; has two closely related proteins (59% identity), MpAOS1 and MpAOS2, that are similar to moss PpAOS1 (49 and 47% identity, respectively); and exhibits AOS activity but not HPL activity. We also found that the green microalgae Klebsormidium flaccidum, consist of multicellular and non-branching filaments, contains an enzyme, KfAOS, that is similar to PpAOS1 (37% identity), and converts 13-hydroperoxide of linolenic acid to 12-oxo-phytodienoic acid in a coupled reaction with allene oxide cyclase. Phylogenetic analysis showed two evolutionarily distinct clusters. One cluster comprised AOS and HPL from charophytic algae, liverworts, and mosses, including MpAOSs and KfAOS. The other cluster was formed by angiosperm CYP74. Our results suggest that plant CYP74 enzymes with AOS, HPL, and divinyl ether synthase activities have arisen multiple times and in the two different clades, which occurred prior to the divergence of the flowering plant lineage.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Oxirredutases Intramoleculares/metabolismo , Marchantia/enzimologia , Microalgas/enzimologia , Proteínas de Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Oxirredutases Intramoleculares/genética , Proteínas de Plantas/genéticaRESUMO
Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species.
Assuntos
Citrus/enzimologia , Dimetilaliltranstransferase/metabolismo , Difosfatos/metabolismo , Diterpenos/metabolismo , Citrus/genética , Dimetilaliltranstransferase/genética , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Ruta , Análise de Sequência de DNA , Homologia de Sequência do Ácido NucleicoRESUMO
Floral scents play important ecological roles because they attract pollinators and seed-dispersers. Historically, humans have used plant volatiles, including floral scents, as food additives, cosmetic products, and medicines. Floral scent formation and emissions are sometimes considerably affected by environmental and climatic conditions. Both enzymes and genes involved in floral scent biosynthesis have been consistently identified, and have provided insights into the potential of metabolic engineering of floral scents. This review summarizes recent studies on various aspects of floral scent biosynthesis and emission, including biosynthetic enzymes and genetic engineering. The findings ultimately show that the metabolic pathways of floral volatiles may be regulated by a more complex system than previously thought.
RESUMO
SABATH proteins methylate the carboxyl groups or nitrogen atoms of small plant molecules and play important roles in many developmental processes and plant defense responses. Previous studies have shown that indole-3-acetic acid (IAA) carboxyl methyltransferase (IAMT), a member of the SABATH methyltransferase family, converts IAA into its methyl ester (Me-IAA). We used RNA-seq analysis to identify a putative IAMT gene, IaIAMT, in the ancient angiosperm Illicium anisatum. Functional characterization of the recombinant IaIAMT protein expressed in Escherichia coli showed the highest level of activity with IAA, whereas indole-3-propionic acid and indole-3-butyric acid were not used as substrates. The apparent Km value of IaIAMT using IAA as a substrate was determined to be 122 µM. Phylogenetic analysis and structural modeling of IaIAMT suggested that IaIAMT evolved independently from IAMTs isolated from other plant species, whereas strict substrate specificity toward IAA was conserved in Illicium species, as observed in other plants.