Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(47): 16330-16339, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30380843

RESUMO

Solid-state batteries with inorganic solid electrolytes are currently being discussed as a more reliable and safer future alternative to the current lithium-ion battery technology. To compete with state-of-the-art lithium-ion batteries, solid electrolytes with higher ionic conductivities are needed, especially if thick electrode configurations are to be used. In the search for optimized ionic conductors, the lithium argyrodites have attracted a lot of interest. Here, we systematically explore the influence of aliovalent substitution in Li6+ xP1- xGe xS5I using a combination of X-ray and neutron diffraction, as well as impedance spectroscopy and nuclear magnetic resonance. With increasing Ge content, an anion site disorder is induced and the activation barrier for ionic motion drops significantly, leading to the fastest lithium argyrodite so far with 5.4 ± 0.8 mS cm-1 in a cold-pressed state and 18.4 ± 2.7 mS cm-1 upon sintering. These high ionic conductivities allow for successful implementation within a thick-electrode solid-state battery that shows negligible capacity fade over 150 cycles. The observed changes in the activation barrier and changing site disorder provide an additional approach toward designing better performing solid electrolytes.

2.
Inorg Chem ; 57(21): 13920-13928, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30345753

RESUMO

Lithium-ion conducting argyrodites have recently attracted significant interest as solid electrolytes for solid-state battery applications. In order to enhance the utility of materials in this class, a deeper understanding of the fundamental structure-property relationships is still required. Using Rietveld refinements of X-ray diffraction data and pair distribution function analysis of neutron diffraction data, coupled with electrochemical impedance spectroscopy and speed of sound measurements, the structure and transport properties within Li6PS5- xSe xBr (0 ≤ x ≤ 1) have been monitored with increasing Se content. While it has been previously suggested that the incorporation of larger, more polarizable anions within the argyrodite lattice should lead to enhancements in the ionic conductivity, the Li6PS5- xSe xBr transport behavior was found to be largely unaffected by the incorporation of Se2- due to significant structural modifications to the anion sublattice. This work affirms the notion that, when optimizing the ionic conductivity of solid ion conductors, local structural influences cannot be ignored and the idea of "the softer the lattice, the better" does not always hold true.

3.
Phys Chem Chem Phys ; 20(30): 20088-20095, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30024004

RESUMO

Inspired by reports of redox active interphases in all-solid-state batteries employing fast conducting lithium thiophosphate solid-state electrolytes, we investigated the compositional depolymerization of interconnected PS4 tetrahedra in (Li2S)x(P2S5)100-x glasses (50 < x < 80) by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Based on the observed energy shifts with composition, we present a structural model of the three different bonding types describing the structures of either crystalline or amorphous thiophosphates. This model and reference data characterizes amorphous thiophosphates based on their inter-tetrahedral connectivity and helps to distinguish malign decomposition reactions from reversible redox reactions at the cathode active material/solid-state electrolyte interface. This work highlights the importance of a combined analytical approach and appropriate reference compounds to elucidate the interface reactions in all-solid-state battery systems.

4.
ACS Appl Mater Interfaces ; 14(21): 24245-24254, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471027

RESUMO

Researchers have been working for many years to find new material and cell systems that can be used as potential post-lithium-ion batteries. Among these, the all-solid-state battery is considered a promising candidate, with sulfide-based materials having essential advantages over other solid electrolyte materials, particularly in terms of their high ionic conductivity. A great challenge, however, is their high reactivity in contact with water, where harmful hydrogen sulfide (H2S) is formed. Since H2S formation has implications for both worker safety and material quality, it is important to quantify its impact. For this reason, this paper examines the relationship between the product properties and the H2S formation as well as influences resulting from the production environment. Exemplary material states along the process chain of a wet coating process route are analyzed for the steps of storage, mixing, coating, drying, and densifying with Li6PS5Cl (LPSCl) as a solid electrolyte material. By determining the H2S formation rate for sulfide-based separator sheets, it is shown that the water content in the surrounding atmosphere has the highest impact, while other investigated parameters are negligibly small in comparison. Among the product properties, the geometric surface and pore surface have a great influence. These results demonstrate the need for a controlled atmosphere in the production facilities at dew points of -40 to -50 °C. At those moisture levels, occupational safety and product quality are ensured for the investigated solid electrolyte sheets of LPSCl. This study is the first to provide quantitative data from the point of view of the production environment on the formation of H2S gas when using solid sulfide electrolytes and can therefore serve as a guideline for equipment, material, and cell manufacturers.

5.
ACS Appl Mater Interfaces ; 11(26): 23244-23253, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31199108

RESUMO

A nondegrading, low-impedance interface between a solid electrolyte and cathode active materials remains a key challenge for the development of functional all-solid-state batteries (ASSBs). The widely employed thiophosphate-based solid electrolytes are not stable toward oxidation and suffer from growing interface resistance and thus rapid fading of capacity in a solid-state battery. In contrast, NASICON-type phosphates such as Li1+ xAl xTi2- x(PO4)3 and Li1+ xAl xGe2- x(PO4)3 are stable at high potentials, but their mechanical rigidity and high grain boundary resistance are thought to impede their application in bulk-type solid-state batteries. In this work, we present a comparative study of a LiNi0.8Co0.1Mn0.1O2 (NCM-811) cathode composite employing either ß-Li3PS4 (LPS) or Li1.5Al0.5Ti1.5(PO4)3 (LATP) as a solid electrolyte. LPS is employed as a separator in both cases to assemble a functional ASSB. To avoid high-temperature processing of LATP, along with subsequent detrimental interfacial reactions with NCM materials, the ASSBs are constructed and operated in a hot-press setup at 150 °C. The cathode interfaces are investigated using in situ electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy, which reveals that the interface resistance is strongly suppressed and the chemical state of the composite is unchanged during cycling when employed with LATP. The cell using LATP is reversibly charged and discharged for multiple cycles and outperforms a comparable cell using a thiophosphate composite electrode. The results indicate that LATP in the cathode composite represents an excellent candidate to overcome interfacial challenges in bulk-type solid-state batteries.

6.
iScience ; 16: 270-282, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31203184

RESUMO

Low lithium-ion migration barriers have recently been associated with low average vibrational frequencies or phonon band centers, further helping identify descriptors for superionic conduction. To further explore this correlation, here we present the computational screening of ∼14,000 Li-containing compounds in the Materials Project database using a descriptor based on lattice dynamics reported recently to identify new promising Li-ion conductors. An efficient computational approach was optimized to compute the average vibrational frequency or phonon band center of ∼1,200 compounds obtained after pre-screening based on structural stability, band gap, and their composition. Combining a low computed Li phonon band center with large computed electrochemical stability window and structural stability, 18 compounds were predicted to be promising Li-ion conductors, one of which, Li3ErCl6, has been synthesized and exhibits a reasonably high room-temperature conductivity of 0.05-0.3 mS/cm, which shows the promise of Li-ion conductor discovery based on lattice dynamics.

7.
Chem Sci ; 9(37): 7405-7412, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30542544

RESUMO

The host-guest system TCNQ@Cu3BTC2 (TCNQ = 7,7,8,8-tetracyanoquinodimethane, BTC = 1,3,5-benzenetricarboxylate) is a striking example of how semiconductivity can be introduced by guest incorporation in an otherwise insulating parent material. Exhibiting both microporosity and semiconducting behavior such materials offer exciting opportunities as next-generation sensor materials. Here, we apply a solvent-free vapor phase loading under rigorous exclusion of moisture, obtaining a series of the general formula xTCNQ@Cu3BTC2 (0 ≤ x ≤ 1.0). By using powder X-ray diffraction, infrared and X-ray absorption spectroscopy together with scanning electron microscopy and porosimetry, we provide the first structural evidence for a systematic preferential arrangement of TCNQ along the (111) lattice plane and the bridging coordination motif to two neighbouring Cu-paddlewheels, as was predicted by theory. For 1.0TCNQ@Cu3BTC2 we find a specific electrical conductivity of up to 1.5 × 10-4 S cm-1 whilst maintaining a high BET surface area of 573.7 m2 g-1. These values are unmatched by MOFs with equally high electrical conductivity, making the material attractive for applications such as super capacitors and chemiresistors. Our results represent the crucial missing link needed to firmly establish the structure-property relationship revealed in TCNQ@Cu3BTC2, thereby creating a sound basis for using this as a design principle for electrically conducting MOFs.

8.
ACS Appl Mater Interfaces ; 9(41): 35888-35896, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28937736

RESUMO

All-solid-state batteries (SSBs) have recently attracted much attention due to their potential application in electric vehicles. One key issue that is central to improve the function of SSBs is to gain a better understanding of the interfaces between the material components toward enhancing the electrochemical performance. In this work, the interfacial properties of a carbon-containing cathode composite, employing Li10GeP2S12 as the solid electrolyte, are investigated. A large interfacial charge-transfer resistance builds up upon the inclusion of carbon in the composite, which is detrimental to the resulting cycle life. Analysis by X-ray photoelectron spectroscopy reveals that carbon facilitates faster electrochemical decomposition of the thiophosphate solid electrolyte at the cathode/solid electrolyte interface-by transferring the low chemical potential of lithium in the charged state deeper into the solid electrolyte and extending the decomposition region. The occurring accumulation of highly oxidized sulfur species at the interface is likely responsible for the large interfacial resistances and aggravated capacity fading observed.

9.
ACS Appl Mater Interfaces ; 9(21): 17835-17845, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28481084

RESUMO

All-solid-state lithium-ion batteries have the potential to become an important class of next-generation electrochemical energy storage devices. However, for achieving competitive performance, a better understanding of the interfacial processes at the electrodes is necessary for optimized electrode compositions to be developed. In this work, the interfacial processes between the solid electrolyte (Li10GeP2S12) and the electrode materials (In/InLi and LixCoO2) are monitored using impedance spectroscopy and galvanostatic cycling, showing a large resistance contribution and kinetic hindrance at the metal anode. The effect of different fractions of the solid electrolyte in the composite cathodes on the rate performance is tested. The results demonstrate the necessity of a carefully designed composite microstructure depending on the desired applications of an all-solid-state battery. While a relatively low mass fraction of solid electrolyte is sufficient for high energy density, a higher fraction of solid electrolyte is required for high power density.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa