Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 93(5): 735-40, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22019354

RESUMO

The goal of this study was to determine whether elevated [K(+)] protects stratified corneal epithelial cells from entering apoptosis following exposure to ambient levels of UVB radiation. Human corneal limbal epithelial (HCLE) cells were stratified to form multilayered constructs in culture. The cells were exposed to UVB doses of 100-250 mJ/cm(2) followed by incubation in medium with 5.5-100 mM K(+). The protective effect of K(+) was determined by measuring the caspase-3 and -8 activity and TUNEL staining of the stratified HCLE constructs. In response to UVB exposure, activation of apoptotic pathways peaked at 24 h. Caspase-8 in stratified cells was activated by exposure to UVB at 100-250 mJ/cm(2), and activity was significantly reduced in response to 50 or 100 mM K(+). Caspase-3 was activated in the stratified cells in response to 100-250 mJ/cm(2) UVB and showed a significant reduction in activity in response to 25, 50 or 100 mM K(+). DNA fragmentation, as indicated by TUNEL staining, was elevated after exposure to 200 mJ/cm(2) UVB, and decreased following incubation with 25-100 mM K(+). These results show that in a culture system that models the intact corneal epithelium, elevated extracellular K(+) can reduce UVB-induced apoptosis which is believed to be initiated by loss of K(+) from cells. This is the basis of damage to the corneal epithelium caused by UVB exposure. Based on these observations it is suggested that the relatively high K(+) concentration in tears (20-25 mM) may play a role in protecting the corneal epithelium from ambient UVB radiation.


Assuntos
Apoptose/efeitos da radiação , Epitélio Corneano/efeitos dos fármacos , Limbo da Córnea/citologia , Potássio/farmacologia , Raios Ultravioleta , Caspase 3/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/efeitos da radiação , Epitélio Corneano/enzimologia , Epitélio Corneano/efeitos da radiação , Humanos , Marcação In Situ das Extremidades Cortadas
2.
Exp Eye Res ; 90(2): 216-22, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19874821

RESUMO

The goal of this study was to determine whether prevention of K(+) loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150-200 mJ/cm(2) UV-B demonstrated induction of apoptosis 6 h after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K(+). If this protection is due to a reduction of UV-induced K(+) loss then K(+) channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm(2) was significantly reduced when the cells were incubated in 0.3 microM BDS-I or 0.05-1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1-0.3 microM BDS-I and 0.1-1 mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 microM BDS-I and 0.01-0.05 mM quinidine. Patch-clamp recording showed activation of K(+) channels after exposure to UV-B and a decrease in outward K(+) current was observed following application of BDS-I. Quinidine did not block K(+) currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K(+) channels. The effect of the K(+) channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K(+) efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K(+)] in tears may protect the corneal epithelium from effects of ambient UV-B.


Assuntos
Apoptose/efeitos da radiação , Epitélio Corneano/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shaw/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Inibidores de Caspase , Contagem de Células , Fragmentação do DNA , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/efeitos da radiação , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Marcação In Situ das Extremidades Cortadas , Técnicas de Patch-Clamp , Potássio/metabolismo , Quinidina/farmacologia , Raios Ultravioleta
3.
Exp Eye Res ; 89(2): 140-51, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19289117

RESUMO

The goal of this study was to determine if the high [K(+)] in tears, 20-25 mM, serves to protect corneal epithelial cells from going into apoptosis after exposure to ambient UV-B radiation. Human corneal-limbal epithelial (HCLE) cells in culture were exposed to UV-B at doses of 50-200 mJ/cm(2) followed by measurement of K(+) channel activation and activity of apoptotic pathways. Patch-clamp recording showed activation of K(+) channels after UV-B exposure at 80 mJ/cm(2) or 150 mJ/cm(2) and a decrease in UV-induced K(+) efflux with increasing [K(+)](o). The UV-activated current was partially blocked by the specific K(+) channel blocker, BDS-1. DNA fragmentation, as measured by the TUNEL assay, was induced after exposure to UV-B at 100-200 mJ/cm(2). DNA fragmentation was significantly decreased when cells were incubated in 25, 50 or 100mM K(o)(+) after exposure to UV-B. The effector caspase, caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), but there was a significant decrease in activation when the cells were incubated in 25, 50 or 100mM K(o)(+) following exposure to UV-B. A decrease in mitochondrial potential, a possible activator of caspase-3, occurred after exposure to UV-B at 100-200 mJ/cm(2). This decrease in mitochondrial potential was prevented by 100mM K(o)(+); however, 25 or 50mM K(o)(+) provided minimal protection. Caspase-9, which is in the pathway from mitochondrial potential change to caspase-3 activation, showed little activation by UV-B radiation. Caspase-8, an initiator caspase that activates caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), and this UV-activation was significantly reduced by 25-100mM K(o)(+). The data show that the physiologically relevant [K(+)](o) of 25 mM can inhibit UV-B induced activation of apoptotic pathways. This suggests that the relatively high [K(+)] in tears reduces loss of K(+) from corneal epithelial cells in response to UV exposure, thereby contributing to the protection of the ocular surface from ambient UV radiation.


Assuntos
Apoptose/efeitos da radiação , Epitélio Corneano/efeitos da radiação , Canais de Potássio/fisiologia , Raios Ultravioleta , Apoptose/fisiologia , Caspases/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Fragmentação do DNA , Relação Dose-Resposta à Radiação , Ativação Enzimática/efeitos dos fármacos , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial/fisiologia , Potencial da Membrana Mitocondrial/efeitos da radiação , Técnicas de Patch-Clamp , Canais de Potássio/efeitos da radiação , Transdução de Sinais/efeitos da radiação
4.
J Ocul Pharmacol Ther ; 29(7): 681-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23634787

RESUMO

PURPOSE: Oxidative damage to the corneal epithelium may be involved in dry eye disease. The bioavailability and efficacy of antioxidants in human corneal limbal epithelial (HCLE) cells were measured to determine whether antioxidants might be beneficial constituents of lubricant eye drops. METHODS: The activity of antioxidants was evaluated using a cellular antioxidant activity assay in which, cells were loaded with the reactive oxygen species (ROS)-sensitive fluorescent indicator, 2',7'-dichlorofluorescin diacetate (DCFH-DA), and an antioxidant compound. ROS were then generated intracellularly using 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP) or extracellularly using xanthine oxidase, and the ability of an antioxidant to inhibit ROS-generated fluorescence was measured. RESULTS: When ROS were generated by ABAP, EC50 values for quercetin, epigallocatechin gallate (EGCG), n-propyl gallate, and gallic acid were 2.98, 3.41, 6.30, and 50.7 µM, respectively. When ROS were generated extracellularly by xanthine oxidase, EC50 values for quercetin, EGCG, n-propyl gallate, and gallic acid were 41.3, 56.5, 70.5, and 337.5 µM. These values were reduced significantly when an antioxidant was present both in the medium with the xanthine oxidase and within the cells. CONCLUSIONS: The antioxidants were effective at quenching ROS in HCLE cells, indicating that they are bioavailable and might be effective in protecting the corneal epithelium from oxidative damage if included in a lubricant eye drop.


Assuntos
Antioxidantes/farmacologia , Epitélio Corneano/efeitos dos fármacos , Limbo da Córnea/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Amidinas/farmacologia , Antioxidantes/farmacocinética , Disponibilidade Biológica , Catequina/análogos & derivados , Células Cultivadas , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Fluoresceínas/farmacologia , Humanos , Hipoxantina/metabolismo , Limbo da Córnea/citologia , Limbo da Córnea/metabolismo , Oxidantes/farmacologia , Quercetina/farmacologia , Distribuição Tecidual , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa