Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Front Oncol ; 12: 1049436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505808

RESUMO

Pancreatic cancer is currently the seventh leading cause of cancer-related deaths worldwide, with the estimated death toll approaching half a million annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common (>90% of cases) and most aggressive form of pancreatic cancer, with extremely poor prognosis and very low survival rates. PDAC is initiated by genetic alterations, usually in the oncogene KRAS and tumor suppressors CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream signaling pathways that regulate important cellular processes. One of the processes critically altered is autophagy, the mechanism by which cells clear away and recycle impaired or dysfunctional organelles, protein aggregates and other unwanted components, in order to achieve homeostasis. Autophagy plays conflicting roles in PDAC and has been shown to act both as a positive effector, promoting the survival of pancreatic tumor-initiating cells, and as a negative effector, increasing cytotoxicity in uncontrollably expanding cells. Recent findings have highlighted the importance of cancer stem cells in PDAC initiation, progression and metastasis. Pancreatic cancer stem cells (PaCSCs) comprise a small subpopulation of the pancreatic tumor, characterized by cellular plasticity and the ability to self-renew, and autophagy has been recognised as a key process in PaCSC maintenance and function, simultaneously suggesting new strategies to achieve their selective elimination. In this review we evaluate recent literature that links autophagy with PaCSCs and PDAC, focusing our discussion on the therapeutic implications of pharmacologically targeting autophagy in PaCSCs, as a means to treat PDAC.

3.
Int J Oncol ; 60(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445738

RESUMO

Radiation therapy (RT) is an essential component in the therapeutic treatment of patients with localized prostate cancer (LPCa). Besides its local effects, ionizing radiation has been linked to mechanisms leading to systemic immune activation. The present study explored the effect of RT on the T­cell receptor variable ß (TCR Vß) chain repertoire of peripheral blood T cells in patients with LPCa. High­throughput TCR Vß sequencing was performed on 20 blood samples collected from patients with LPCa at baseline and 3 months post­RT. The diversity index was altered, as were TCR Vß clonal evenness and convergence before and post­RT; however, these findings were not significant. Notably, marked changes in the frequencies among the top 10 TCR Vß clonotypes were detected and some patients developed new clonotypes of high abundance. These data provided initial evidence that RT in patients with LPCa may induce systemic immune changes, which could be exploited by future therapies for improved clinical results.


Assuntos
Neoplasias da Próstata , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Receptores de Antígenos de Linfócitos T alfa-beta/genética
4.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570992

RESUMO

The prognostic value of human leukocyte antigen (HLA) class I molecules in prostate cancer (PCa) remains unclear. Herein, we investigated the prognostic relevance of the most frequently expressed HLA-A alleles in Greece (A*02:01 and HLA-A*24:02) in de novo metastatic hormone-sensitive PCa (mPCa), which is a rare and aggressive disease characterized by a rapid progression to castration-resistance (CR) and poor overall survival (OS), contributing to almost 50% of PCa-related deaths. We identified 56 patients who had either progressed to CR (these patients were retrospectively analyzed for the time to the progression of CR and prospectively for OS) or had at least three months' follow-up postdiagnosis without CR progression and, thus, were prospectively analyzed for both CR and OS. Patients expressing HLA-A*02:01 showed poor clinical outcomes vs. HLA-A*02:01-negative patients. HLA-A*24:02-positive patients progressed slower to CR and had increased OS. Homozygous HLA-A*02:01 patients progressed severely to CR, with very short OS. Multivariate analyses ascribed to both HLA alleles significant prognostic values for the time to progression (TTP) to CR and OS. The presence of HLA-A*02:01 and HLA-A*24:02 alleles in de novo mPCa patients are significantly and independently associated with unfavorable or favorable clinical outcomes, respectively, suggesting their possible prognostic relevance for treatment decision-making in the context of precision medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa