Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 26(2): 200-11, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17304734

RESUMO

A new speckle reduction method, i.e., Laplacian pyramid-based nonlinear diffusion (LPND), is proposed for medical ultrasound imaging. With this method, speckle is removed by nonlinear diffusion filtering of bandpass ultrasound images in Laplacian pyramid domain. For nonlinear diffusion in each pyramid layer, a gradient threshold is automatically determined by a variation of median absolute deviation (MAD) estimator. The performance of the proposed LPND method has been compared with that of other speckle reduction methods, including the recently proposed speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD). In simulation and phantom studies, an average gain of 1.55 dB and 1.34 dB in contrast-to-noise ratio was obtained compared to SRAD and NCD, respectively. The visual comparison of despeckled in vivo ultrasound images from liver and carotid artery shows that the proposed LPND method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. These preliminary results indicate that the proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Armazenamento e Recuperação da Informação/métodos , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-17703670

RESUMO

In this paper, we present a new demodulation method to reduce hardware complexity in phase-rotation-based beamforming. Due to its low sensitivity to phase delay errors, quadrature demodulation, which consists of mixing and lowpass filtering, is commonly used in ultrasound machines. However, because it requires two lowpass filters for each channel to remove harmonics after mixing, the direct use of quadrature demodulation is computationally expensive. To alleviate the high computational requirement in quadrature demodulation, we have developed a two-stage demodulation technique in which dynamic receive focusing is performed on the mixed signal instead of the complex baseband signal. Harmonics then are suppressed by using only two lowpass filters. When the number of channels is 32, the proposed two-stage demodulation reduces the necessary number of multiplications and additions for phase-rotation beamforming by 82.7% and 88.2%, respectively, compared to using quadrature demodulation. We have found from simulation and phantom studies that the proposed method does not incur any significant degradation in image quality in terms of axial and lateral resolution. These preliminary results indicate that the proposed two-stage demodulation method could contribute to significantly reducing the hardware complexity in phase-rotation-based beamforming while providing comparable image quality.


Assuntos
Aumento da Imagem , Processamento de Sinais Assistido por Computador , Ultrassonografia/instrumentação , Humanos , Imagens de Fantasmas
3.
Ultrasonics ; 44(3): 265-71, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16563453

RESUMO

In this paper, we present a new quadrature demodulation filter to reduce hardware complexity in digital phase rotation beamforming. Due to its low sensitivity to phase delay errors, digital quadrature demodulation is commonly used in ultrasound machines. However, since it requires two lowpass filters for each channel to remove harmonics, the direct use of conventional finite impulse response (FIR) filters in ultrasound machines is computationally expensive and burdensome. In our new method, an efficient multi-stage uniform coefficient (MSUC) filter is utilized to remove harmonic components in phase rotation beamforming. In comparison with the directly implemented FIR (DI-FIR) and the previously-proposed signed-power-of-two FIR (SPOT-FIR) lowpass filters, the proposed MSUC filter reduces the necessary hardware resources by 93.9% and 83.9%, respectively. In simulation, the MSUC filter shows a negligible degradation in image quality. The proposed method resulted in comparable spatial and contrast resolution to the DI-FIR approach in the phantom study. These preliminary results indicate that the proposed quadrature demodulation filtering method could significantly reduce the hardware complexity in phase rotation beamforming while maintaining comparable image quality.


Assuntos
Aumento da Imagem , Processamento de Sinais Assistido por Computador , Ultrassonografia/instrumentação , Humanos , Imagens de Fantasmas
4.
Artigo em Inglês | MEDLINE | ID: mdl-18986890

RESUMO

A pre-delay reconstruction sigma-delta beamformer (SDBF) was recently proposed to achieve a higher level of integration in ultrasound imaging systems. Nevertheless, the high-order reconstruction filter used in each channel of SDBF makes the beamformer highly complex. The beamformer can be simplified by reconstructing the signal after the delay-and-sum process with only one filter. However, this post-delay reconstruction-based design degrades image quality when dynamic focusing is performed. This paper shows that employing a simple pre-delay filter is sufficient to achieve similar performance as conventional pre-delay reconstruction SDBF, as long as the pre-delay filter provides the required pre-delay signal to-quantization noise ratio (SQNR). Based on this finding, we proposed a cascaded reconstruction beamformer that uses a boxcar filter as the pre-delay filter in each channel. Simulations using real phantom data demonstrate that the proposed beamforming method can achieve a contrast resolution comparable to that of the pre-delay reconstruction beamforming method. In addition, the hardware can be greatly simplified compared with the pre-delay reconstruction beamformers.


Assuntos
Desenho Assistido por Computador , Aumento da Imagem/instrumentação , Transdutores , Ultrassonografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa