Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Annu Rev Biochem ; 82: 471-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746260

RESUMO

The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.


Assuntos
Enzimas/fisiologia , Hidrogênio/química , Proteínas/fisiologia , Termodinâmica , Catálise , Enzimas/química , Hidrogênio/metabolismo , Hidrogênio/fisiologia , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas/química
2.
Biochemistry ; 60(50): 3822-3828, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875176

RESUMO

Evolution of dihydrofolate reductase (DHFR) has been studied using the enzyme from Escherichia coli DHFR (ecDHFR) as a model, but less studies have used the enzyme from Homo sapiens DHFR (hsDHFR). Each enzyme maintains a short and narrow distribution of hydride donor-acceptor distances (DAD) at the tunneling ready state (TRS). Evolution of the enzyme was previously studied in ecDHFR where three key sites were identified as important to the catalyzed reaction. The corresponding sites in hsDHFR are F28, 62-PEKN, and 26-PPLR. Each of these sites was studied here through the creation of mutant variants of the enzyme and measurements of the temperature dependence of the intrinsic kinetic isotope effects (KIEs) on the reaction. F28 is mutated first to M (F28M) and then to the L of the bacterial enzyme (F28L). The KIEs of the F28M variant are larger and more temperature-dependent than wild-type (WT), suggesting a broader and longer average DAD at the TRS. To more fully mimic ecDHFR, we also study a triple mutant of the human enzyme (F32L-PP26N-PEKN62G). Remarkably, the intrinsic KIEs, while larger in magnitude, are temperature-independent like the WT enzymes. We also construct deletion mutations of hsDHFR removing both the 62-PEKN and 26-PPLR sequences. The results mirror those described previously for insertion mutants of ecDHFR. Taken together, these results suggest a balancing act during DHFR evolution between achieving an optimal TRS for hydride transfer and preventing product inhibition arising from the different intercellular pools of NADPH and NADP+ in prokaryotic and eukaryotic cells.


Assuntos
Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Substituição de Aminoácidos , Biocatálise , Escherichia coli/enzimologia , Escherichia coli/genética , Evolução Molecular , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/genética , Termodinâmica
3.
Biochemistry ; 60(16): 1243-1247, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829766

RESUMO

Methylation of 2-deoxyuridine-5'-monophosphate (dUMP) at the C5 position by the obligate dimeric thymidylate synthase (TSase) in the sole de novo biosynthetic pathway to thymidine 5'-monophosphate (dTMP) proceeds by forming a covalent ternary complex with dUMP and cosubstrate 5,10-methylenetetrahydrofolate. The crystal structure of an analog of this intermediate gives important mechanistic insights but does not explain the half-of-the-sites activity of the enzyme. Recent experiments showed that the C5 proton and the catalytic Cys are eliminated in a concerted manner from the covalent ternary complex to produce a noncovalent bisubstrate intermediate. Here, we report the crystal structure of TSase with a close synthetic analog of this intermediate in which it has partially reacted with the enzyme but in only one protomer, consistent with the half-of-the-sites activity of this enzyme. Quantum mechanics/molecular mechanics simulations confirmed that the analog could undergo catalysis. The crystal structure shows a new water 2.9 Å from the critical C5 of the dUMP moiety, which in conjunction with other residues in the network, may be the elusive general base that abstracts the C5 proton of dUMP during the reaction.


Assuntos
Timidilato Sintase/química , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Timidilato Sintase/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(41): 10311-10314, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249644

RESUMO

Thymidylate synthase was one of the most studied enzymes due to its critical role in molecular pathogenesis of cancer. Nevertheless, many atomistic details of its chemical mechanism remain unknown or debated, thereby imposing limits on design of novel mechanism-based anticancer therapeutics. Here, we report unprecedented isolation and characterization of a previously proposed intact noncovalent bisubstrate intermediate formed in the reaction catalyzed by thymidylate synthase. Free-energy surfaces of the bisubstrate intermediates interconversions computed with quantum mechanics/molecular mechanics (QM/MM) methods and experimental assessment of the corresponding kinetics indicate that the species is the most abundant productive intermediate along the reaction coordinate, whereas accumulation of the covalent bisubstrate species largely occurs in a parallel nonproductive pathway. Our findings not only substantiate relevance of the previously proposed noncovalent intermediate but also support potential implications of the overstabilized covalent intermediate in drug design targeting DNA biosynthesis.


Assuntos
Timidilato Sintase/química , Timidilato Sintase/metabolismo , Catálise , Nucleotídeos de Desoxiuracil/química , Nucleotídeos de Desoxiuracil/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Simulação de Dinâmica Molecular , Teoria Quântica , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo
5.
Langmuir ; 36(15): 4174-4183, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32233509

RESUMO

Single-molecule studies can reveal the distribution of states and interactions between ligand-enzyme complexes not accessible for most studies that measure a large ensemble average response of many molecules. Furthermore, in some biological applications, the information regarding the outliers, not the average of measured properties, can be more important. The high spatial and force resolution provided by atomic force microscopy (AFM) under physiological conditions has been utilized in this study to quantify the force-distance relations of enzyme-drug interactions. Different immobilization techniques of the protein to a surface and the drug to AFM tip were quantitatively compared to improve the accuracy and precision of the measurement. Protein that is directly bound to the surface, forming a monolayer, was compared to enzyme molecules bound to the surface with rigid double-stranded (ds) DNA spacers. These surfaces immobilization techniques were studied with the drug bound directly to the AFM tip and drug bound via flexible poly(ethylene glycol) and rigid dsDNA linkers. The activity of the enzyme was found to be not significantly altered by immobilization methods relative to its activity in solution. The findings indicate that the approach for studying drug-enzyme interaction based on rigid dsDNA linker on the surface and either flexible or rigid linker on the tip affords straightforward, highly specific, reproducible, and accurate force measurements with a potential for single-molecule level studies. The method could facilitate in-depth examination of a broad spectrum of biological targets and potential drugs.


Assuntos
DNA , Nanotecnologia , Interações Medicamentosas , Microscopia de Força Atômica , Análise Espectral
6.
Biochemistry ; 58(37): 3861-3868, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31423766

RESUMO

Understanding protein motions and their role in enzymatic reactions is an important and timely topic in enzymology. Protein motions that are involved in the chemical step of catalysis are particularly intriguing but difficult to identify. A global network of coupled residues in Escherichia coli dihydrofolate reductase (E. coli DHFR), which assists in catalyzing the chemical step, has previously been demonstrated through quantum mechanical/molecular mechanical and molecular dynamics simulations as well as bioinformatic analyses. A few specific residues (M42, G121, F125, and I14) were shown to function synergistically with measurements of single-turnover rates and the temperature dependence of intrinsic kinetic isotope effects (KIEsint) of site-directed mutants. This study hypothesizes that the global network of residues involved in the chemical step is evolutionarily conserved and probes homologous residues of the potential global network in human DHFR through measurements of the temperature dependence of KIEsint and computer simulations based on the empirical valence bond method. We study mutants M53W and S145V. Both of these remote residues are homologous to network residues in E. coli DHFR. Non-additive isotope effects on activation energy are observed between M53 and S145, indicating their synergistic effect on the chemical step in human DHFR, which suggests that both of these residues are part of a network affecting the chemical step in enzyme catalysis. This finding supports the hypothesis that human and E. coli DHFR share similar networks, consistent with evolutionary preservation of such networks.


Assuntos
Computadores Moleculares , Proteínas de Escherichia coli/química , Evolução Molecular , Tetra-Hidrofolato Desidrogenase/química , Humanos , Estrutura Secundária de Proteína
7.
J Biol Chem ; 292(34): 14229-14239, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28620051

RESUMO

A key question concerning the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) is whether the Met20 loop is dynamically coupled to the chemical step during catalysis. A more basic, yet unanswered question is whether the Met20 loop adopts a closed conformation during the chemical hydride transfer step. To examine the most likely conformation of the Met20 loop during the chemical step, we studied the hydride transfer in wild type (WT) ecDHFR using hybrid quantum mechanics-molecular mechanics free energy simulations with the Met20 loop in a closed and disordered conformation. Additionally, we investigated three mutant forms (I14X; X = Val, Ala, Gly) of the enzyme that have increased active site flexibility and donor-acceptor distance dynamics in closed and disordered Met20 loop states. We found that the conformation of the Met20 loop has a dramatic effect on the ordering of active site hydration, although the Met20 loop conformation only has a moderate effect on the hydride transfer rate and donor-acceptor distance dynamics. Finally, we evaluated the pKa of the substrate N5 position in closed and disordered Met20 loop states and found a strong correlation between N5 basicity and the conformation of the Met20 loop.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Fólico/análogos & derivados , Modelos Moleculares , NADP/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Transferência de Energia , Proteínas de Escherichia coli/química , Ácido Fólico/química , Ácido Fólico/metabolismo , Cinética , Ligantes , Metionina/química , Simulação de Acoplamento Molecular , Mutação , NADP/química , Conformação Proteica , Estrutura Secundária de Proteína , Teoria Quântica , Tetra-Hidrofolato Desidrogenase/química
8.
J Am Chem Soc ; 140(48): 16650-16660, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398861

RESUMO

In the present study, we address the effect of active site structure and dynamics of different dihydrofolate reductase (DHFR) isoforms on the p Ka of the bound substrate 7,8-dihydrofolate, in an attempt to understand possible evolutionary trends. We apply a hybrid QM/MM free energy perturbation method to estimate the p Ka of the N5 position of the bound substrate. We observe a gradual increase in N5 basicity as we move from primitive to more evolved DHFR isoforms. Structural analysis of these isoforms reveals a gradual sequestering of water molecules from the active site in the more evolved enzymes, thereby modulating the local dielectric environment near the substrate. Furthermore, the present study reveals a clear correlation between active site hydration and the N5 p Ka of the substrate. We emphasize the role of the M20 loop in controlling the active site hydration level, via a preorganized active site with a more hydrophobic environment and reduced loop flexibility as evolution progresses from bacterial to the human enzyme.


Assuntos
Ácido Fólico/análogos & derivados , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Bactérias/enzimologia , Catálise , Domínio Catalítico , Evolução Molecular , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Cinética , Camundongos , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Teoria Quântica , Tetra-Hidrofolato Desidrogenase/química , Água/química
9.
Bioorg Med Chem ; 26(9): 2365-2371, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29606487

RESUMO

Exocyclic olefin variants of thymidylate (dTMP) recently have been proposed as reaction intermediates for the thymidyl biosynthesis enzymes found in many pathogenic organisms, yet synthetic reports on these materials are lacking. Here we report two strategies to prepare the exocyclic olefin isomer of dTMP, which is a putative reaction intermediate in pathogenic thymidylate biosynthesis and a novel nucleotide analog. Our most effective strategy involves preserving the existing glyosidic bond of thymidine and manipulating the base to generate the exocyclic methylene moiety. We also report a successful enzymatic deoxyribosylation of a non-aromatic nucleobase isomer of thymine, which provides an additional strategy to access nucleotide analogs with disrupted ring conjugation or with reduced heterocyclic bases. The strategies reported here are straightforward and extendable towards the synthesis of various pyrimidine nucleotide analogs, which could lead to compounds of value in studies of enzyme reaction mechanisms or serve as templates for rational drug design.


Assuntos
Alcenos/síntese química , Timidina Monofosfato/síntese química , Técnicas de Química Sintética/métodos , Escherichia coli/enzimologia , Glicosilação , Simplexvirus/enzimologia , Timidina Quinase/química , Timidina Fosforilase/química
10.
J Am Chem Soc ; 139(48): 17405-17413, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29083897

RESUMO

Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein's mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born-Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born-Oppenheimer enzyme hypothesis (vibrational) and also slower time scale events that are non-Born-Oppenheimer in nature (electrostatic), based on evaluations of protein mass dependence of donor-acceptor distance and forward commitment to catalysis along with steady state and single turnover measurements. Together, the findings suggest that the mass modulation affected both local, fast, protein vibrations associated with the catalyzed chemistry and the protein's macromolecular electrostatics at slower time scales; that is, both Born-Oppenheimer and non-Born-Oppenheimer effects are observed. Comparison to previous studies leads to the conclusion that isotopic labeling of the protein may have different effects on different systems, however, making heavy enzyme studies a very exciting technique for exploring the dynamics link to catalysis in proteins.


Assuntos
Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Biocatálise , Cinética , Peso Molecular , Eletricidade Estática , Temperatura , Vibração
11.
Arch Biochem Biophys ; 632: 11-19, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821425

RESUMO

Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.


Assuntos
Flavinas/química , Flavoproteínas/química , Tetra-Hidrofolatos/química , Timidilato Sintase/química , Flavinas/metabolismo , Flavoproteínas/metabolismo , Metilação , Tetra-Hidrofolatos/metabolismo , Timidina Monofosfato/biossíntese , Timidina Monofosfato/química , Timidilato Sintase/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(51): 18231-6, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25453098

RESUMO

The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) has become a model for understanding enzyme catalysis, and yet several details of its mechanism are still unresolved. Specifically, the mechanism of the chemical step, the hydride transfer reaction, is not fully resolved. We found, unexpectedly, the presence of two reactive ternary complexes [enzyme:NADPH:7,8-dihydrofolate (E:NADPH:DHF)] separated by one ionization event. Furthermore, multiple kinetic isotope effect (KIE) studies revealed a stepwise mechanism in which protonation of the DHF precedes the hydride transfer from the nicotinamide cofactor (NADPH) for both reactive ternary complexes of the WT enzyme. This mechanism was supported by the pH- and temperature-independent intrinsic KIEs for the C-H→C hydride transfer between NADPH and the preprotonated DHF. Moreover, we showed that active site residues D27 and Y100 play a synergistic role in facilitating both the proton transfer and subsequent hydride transfer steps. Although D27 appears to have a greater effect on the overall rate of conversion of DHF to tetrahydrofolate, Y100 plays an important electrostatic role in modulating the pKa of the N5 of DHF to enable the preprotonation of DHF by an active site water molecule.


Assuntos
Ácido Aspártico/metabolismo , Escherichia coli/enzimologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Tirosina/metabolismo , Biocatálise , Prótons , Temperatura , Tetra-Hidrofolato Desidrogenase/química
13.
Biochemistry ; 55(7): 1100-6, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26813442

RESUMO

Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.


Assuntos
Modelos Moleculares , Tetra-Hidrofolato Desidrogenase/química , Algoritmos , Biocatálise , Isótopos de Carbono , Deutério , Estabilidade Enzimática , Humanos , Marcação por Isótopo , Simulação de Dinâmica Molecular , Peso Molecular , Isótopos de Nitrogênio , Conformação Proteica , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Biochemistry ; 55(19): 2760-71, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27100912

RESUMO

The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in commercial development. Here, we report the crystallization and structural determination of both holo- and apo-CbFDH. The free-energy barrier for the catalyzed reaction was computed and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: the apoenzyme crystal was obtained under cocrystallization conditions with a saturating concentration of both the cofactor (NAD(+)) and inhibitor (azide), which has a nanomolar dissociation constant. It was found that the fraction of the apoenzyme present in the solution is less than 1.7 × 10(-7) (i.e., the solution is 99.9999% holoenzyme). This is an extreme case where the crystal structure represents an insignificant fraction of the enzyme in solution, and a mechanism rationalizing this phenomenon is presented.


Assuntos
Candida/enzimologia , Formiato Desidrogenases/química , Proteínas Fúngicas/química , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Candida/genética , Formiato Desidrogenases/antagonistas & inibidores , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , NAD/química , NAD/metabolismo , Azida Sódica/química
15.
J Am Chem Soc ; 138(26): 8056-9, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327197

RESUMO

Thymidylate synthase is an attractive target for antibiotic and anticancer drugs due to its essential role in the de novo biosynthesis of the DNA nucleotide thymine. The enzymatic reaction is initiated by a nucleophilic activation of the substrate via formation of a covalent bond to an active site cysteine. The traditionally accepted mechanism is then followed by a series of covalently bound intermediates, where that bond is only cleaved upon product release. Recent computational and experimental studies suggest that the covalent bond between the protein and substrate is actually quite labile. Importantly, these findings predict the existence of a noncovalently bound bisubstrate intermediate, not previously anticipated, which could be the target of a novel class of drugs inhibiting DNA biosynthesis. Here we report the synthesis of the proposed intermediate and findings supporting its chemical and kinetic competence. These findings substantiate the predicted nontraditional mechanism and the potential of this intermediate as a new drug lead.


Assuntos
Timidilato Sintase/metabolismo , Domínio Catalítico , Desenho de Fármacos , Escherichia coli/enzimologia , Humanos , Cinética , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/química
16.
Acc Chem Res ; 48(2): 466-73, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25539442

RESUMO

CONSPECTUS: The role of the enzyme's dynamic motions in catalysis is at the center of heated contemporary debates among both theoreticians and experimentalists. Resolving these apparent disputes is of both intellectual and practical importance: incorporation of enzyme dynamics could be critical for any calculation of enzymatic function and may have profound implications for structure-based drug design and the design of biomimetic catalysts. Analysis of the literature suggests that while part of the dispute may reflect substantial differences between theoretical approaches, much of the debate is semantic. For example, the term "protein dynamics" is often used by some researchers when addressing motions that are in thermal equilibrium with their environment, while other researchers only use this term for nonequilibrium events. The last cases are those in which thermal energy is "stored" in a specific protein mode and "used" for catalysis before it can dissipate to its environment (i.e., "nonstatistical dynamics"). This terminology issue aside, a debate has arisen among theoreticians around the roles of nonstatistical vs statistical dynamics in catalysis. However, the author knows of no experimental findings available today that examined this question in enzyme catalyzed reactions. Another source of perhaps nonsubstantial argument might stem from the varying time scales of enzymatic motions, which range from seconds to femtoseconds. Motions at different time scales play different roles in the many events along the catalytic cascade (reactant binding, reprotonation of reactants, structural rearrangement toward the transition state, product release, etc.). In several cases, when various experimental tools have been used to probe catalytic events at differing time scales, illusory contradictions seem to have emerged. In this Account, recent attempts to sort the merits of those questions are discussed along with possible future directions. A possible summary of current studies could be that enzyme, substrate, and solvent dynamics contribute to enzyme catalyzed reactions in several ways: first via mutual "induced-fit" shifting of their conformational ensemble upon binding; then via thermal search of the conformational space toward the reaction's transition-state (TS) and the rare event of the barrier crossing toward products, which is likely to be on faster time scales then the first and following events; and finally via the dynamics associated with products release, which are rate-limiting for many enzymatic reactions. From a chemical perspective, close to the TS, enzymatic systems seem to stiffen, restricting motions orthogonal to the chemical coordinate and enabling dynamics along the reaction coordinate to occur selectively. Studies of how enzymes evolved to support those efficient dynamics at various time scales are still in their infancy, and further experiments and calculations are needed to reveal these phenomena in both enzymes and uncatalyzed reactions.


Assuntos
Biocatálise , Enzimas/metabolismo , Semântica , Enzimas/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Humanos , Cinética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
17.
Molecules ; 21(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213314

RESUMO

In humans de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP), an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase) and dihydrofolate reductase (DHFR). The enzyme flavin-dependent thymidylate synthase (FDTS) represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/enzimologia , Complexos Multienzimáticos/antagonistas & inibidores , Timidilato Sintase/antagonistas & inibidores , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Flavinas/química , Flavinas/metabolismo , Humanos , Infecções/tratamento farmacológico , Infecções/enzimologia , Infecções/microbiologia , Cinética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidina Monofosfato/biossíntese , Timidina Monofosfato/química , Timidilato Sintase/química , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
18.
Biochemistry ; 54(5): 1287-93, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25581782

RESUMO

The development of cancer-specific probes for imaging by positron emission tomography (PET) is gaining impetus in cancer research and clinical oncology. One of the hallmarks of most cancer cells is incessant DNA replication, which requires the continuous synthesis of nucleotides. Thymidylate synthase (TSase) is unique in this context because it is the only enzyme in humans that is responsible for the de novo biosynthesis of the DNA building block 2'-deoxy-thymidylate (dTMP). TSase catalyzes the reductive methylation of 2'-deoxy-uridylate (dUMP) to dTMP using (R)-N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (MTHF) as a cofactor. Not surprisingly, several human cancers overexpress TSase, which makes it a common target for chemotherapy (e.g., 5-fluorouracil). We envisioned that [(11)C]-MTHF might be a PET probe that could specifically label cancerous cells. Using stable radiotracer [(14)C]-MTHF, we had initially found increased uptake by breast and colon cancer cell lines. In the current study, we examined the uptake of this radiotracer in human pancreatic cancer cell lines MIAPaCa-2 and PANC-1 and found predominant radiolabeling of cancerous versus normal pancreatic cells. Furthermore, uptake of the radiotracer is dependent on the intracellular level of the folate pool, cell cycle phase, expression of folate receptors on the cell membrane, and cotreatment with the common chemotherapeutic drug methotrexate (MTX, which blocks the biosynthesis of endogenous MTHF). These results point toward [(11)C]-MTHF being used as PET probe with broad specificity and being able to control its signal through MTX co-administration.


Assuntos
Neoplasias Pancreáticas , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Timidina Monofosfato/biossíntese , Timidilato Sintase/biossíntese , Isótopos de Carbono , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Marcação por Isótopo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Radiografia , Timidina Monofosfato/metabolismo , Uridina Monofosfato/metabolismo
19.
J Biol Chem ; 289(44): 30205-30212, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25210031

RESUMO

The role of evolutionary pressure on the chemical step catalyzed by enzymes is somewhat enigmatic, in part because chemistry is not rate-limiting for many optimized systems. Herein, we present studies that examine various aspects of the evolutionary relationship between protein dynamics and the chemical step in two paradigmatic enzyme families, dihydrofolate reductases and alcohol dehydrogenases. Molecular details of both convergent and divergent evolution are beginning to emerge. The findings suggest that protein dynamics across an entire enzyme can play a role in adaptation to differing physiological conditions. The growing tool kit of kinetics, kinetic isotope effects, molecular biology, biophysics, and bioinformatics provides means to link evolutionary changes in structure-dynamics function to the vibrational and conformational states of each protein.


Assuntos
Evolução Molecular , Tetra-Hidrofolato Desidrogenase/genética , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Humanos , Cinética , Modelos Químicos , Tetra-Hidrofolato Desidrogenase/química
20.
Anal Biochem ; 484: 169-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25707319

RESUMO

Methods that directly measure the concentration of surface-immobilized biomolecules are scarce. More commonly, the concentration of the soluble molecule is measured before and after immobilization, and the bound concentration is assessed by elimination, assuming that all bound molecules are active. An assay was developed for measuring the active site concentration, activity, and thereby the catalytic turnover rate (kcat) of an immobilized dihydrofolate reductase as a model system. The new method yielded a similar first-order rate constant, kcat, to that of the same enzyme in solution. The findings indicate that the activity of the immobilized enzyme, when separated from the surface by the DNA spacers, has not been altered. In addition, a new immobilization method that leads to solution-like activity of the enzyme on the surface is described. The approaches developed here for immobilization and for determining the concentration of an immobilized enzyme are general and can be extended to other enzymes, receptors, and antibodies.


Assuntos
Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/metabolismo , Domínio Catalítico , Enzimas Imobilizadas/química , Escherichia coli/enzimologia , Cinética , Modelos Moleculares , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa