Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 72(2): 439-465, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139613

RESUMO

Recent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms. We proceed to examine how the initial effects are short-lived and, as such, require both consolidation during wake and maintenance throughout sleep to remain sustained. Here, we incorporate elements from the synaptic homeostasis hypothesis and theorize that the fundamental mechanisms of synaptic plasticity and sleep, particularly the homeostatic emergence of slow-wave electroencephalogram activity and the renormalization of synaptic strength, are at the center of sustained antidepressant effects. We conclude by discussing the various implications of the ENCORE-D hypothesis and offer several considerations for future experimental and clinical research. SIGNIFICANCE STATEMENT: Proposed molecular perspectives of rapid antidepressant effects fail to appreciate the temporal distribution of the effects of ketamine on cortical excitation and plasticity as well as the prolonged influence on depressive symptoms. The encoding, consolidation, and renormalization in depression hypothesis proposes that the lasting clinical effects can be best explained by adaptive functional and structural alterations in neural circuitries set in motion in response to the acute pharmacological effects of ketamine (i.e., changes evoked during the engagement of receptor targets such as N-methyl-D-aspartate receptors) or other putative rapid-acting antidepressants. The present hypothesis opens a completely new avenue for conceptualizing and targeting brain mechanisms that are important for antidepressant effects wherein sleep and synaptic homeostasis are at the center stage.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Sono/efeitos dos fármacos , Animais , Depressão/patologia , Depressão/fisiopatologia , Homeostase/efeitos dos fármacos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
BMC Neurosci ; 19(1): 77, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497382

RESUMO

BACKGROUND: The treatment of Parkinson's disease is often complicated by levodopa-induced dyskinesia (LID). Nicotinic acetylcholine receptor agonists can alleviate LID in animal models but may be less effective in conditions of severe dopaminergic denervation. While the mechanisms of LID remain incompletely understood, elevated corticostriatal levels of the brain-derived neurotrophic factor (BDNF) have been suggested to play a role. Here, female mice with near-total unilateral 6-hydroxydopamine-induced nigrostriatal lesions were chronically treated with levodopa, and the effects of the α7 nicotinic receptor partial agonist AZD0328 and nicotine on LID were assessed. At the end of the experiment, BDNF protein levels in the prefrontal cortex and striatum were measured. RESULTS: Five-day treatments with three escalating doses of AZD0328 and a 10-week treatment with nicotine failed to alleviate LID. BDNF levels in the lesioned striatum correlated positively with LID severity, but no evidence was found for a levodopa-induced elevation of corticostriatal BDNF in the lesioned hemisphere. The nicotine treatment decreased BDNF levels in the prefrontal cortex but had no effect on striatal BDNF. CONCLUSIONS: The findings suggest that treatment of LID with nicotinic agonists may lose its effectiveness as the disease progresses, represent further evidence for a role for BDNF in LID, and expand previous knowledge on the effects of long-term nicotine treatment on BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Agonistas Nicotínicos/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Dopamina/deficiência , Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/patologia , Feminino , Furanos/farmacologia , Levodopa/efeitos adversos , Levodopa/farmacologia , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Quinuclidinas/farmacologia , Distribuição Aleatória , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
3.
J Neurochem ; 142(3): 456-463, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488766

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder primarily affecting the nigrostriatal dopaminergic system. The link between heightened activity of glycogen synthase kinase 3ß (GSK3ß) and neurodegene-rative processes has encouraged investigation into the potential disease-modifying effects of novel GSK3ß inhibitors in experimental models of PD. Therefore, the intriguing ability of several anesthetics to readily inhibit GSK3ß within the cortex and hippocampus led us to investigate the effects of brief isoflurane anesthesia on striatal GSK3ß signaling in naïve rats and in a rat model of early-stage PD. Deep but brief (20-min) isoflurane anesthesia exposure increased the phosphorylation of GSK3ß at the inhibitory Ser9 residue, and induced phosphorylation of AKTThr308 (protein kinase B; negative regulator of GSK3ß) in the striatum of naïve rats and rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesion. The 6-OHDA protocol produced gradual functional deficiency within the nigrostriatal pathway, reflected as a preference for using the limb ipsilateral to the lesioned striatum at 2 weeks post 6-OHDA. Interestingly, such motor impairment was not observed in animals exposed to four consecutive isoflurane treatments (20-min anesthesia every 48 h; treatments started 7 days after 6-OHDA delivery). However, isoflurane had no effect on striatal or nigral tyrosine hydroxylase (a marker of dopaminergic neurons) protein levels. This brief report provides promising results regarding the therapeutic potential and neurobiological mechanisms of anesthetics in experimental models of PD and guides development of novel disease-modifying therapies.


Assuntos
Anestesia/efeitos adversos , Corpo Estriado/metabolismo , Isoflurano/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância Negra/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Isoflurano/administração & dosagem , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Oxidopamina/farmacologia , Doença de Parkinson/patologia , Ratos Wistar
4.
ACS Chem Neurosci ; 14(17): 3212-3225, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37551888

RESUMO

Many mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3ß (GSK3ß). Increased TrkB, GSK3ß, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipotermia , Animais , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mamíferos/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais
5.
Pharmacol Rep ; 73(2): 323-345, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33609274

RESUMO

Over the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine's effects in treating depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine's complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different uses of ketamine, with an emphasis on examining ketamine's rapid antidepressant effects spanning molecular, cellular, and network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine's action.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Anestésicos Dissociativos/administração & dosagem , Anestésicos Dissociativos/farmacologia , Animais , Antidepressivos/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Ketamina/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos
6.
Basic Clin Pharmacol Toxicol ; 129(2): 95-103, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33973360

RESUMO

Increased glutamatergic neurotransmission and synaptic plasticity in the prefrontal cortex have been associated with the rapid antidepressant effects of ketamine. Activation of BDNF (brain-derived neurotrophic factor) receptor TrkB is considered a key molecular event for antidepressant-induced functional and structural synaptic plasticity. Several mechanisms have been proposed to underlie ketamine's effects on TrkB, but much remains unclear. Notably, preliminary studies suggest that besides ketamine, nitrous oxide (N2 O) can rapidly alleviate depressive symptoms. We have shown nitrous oxide to evoke TrkB signalling preferentially after the acute pharmacological effects have dissipated (ie after receptor disengagement), when slow delta frequency electroencephalogram (EEG) activity is up-regulated. Our findings also demonstrate that various anaesthetics and sedatives activate TrkB signalling, further highlighting the complex mechanisms underlying TrkB activation. We hypothesize that rapid-acting antidepressants share the ability to regulate TrkB signalling during homeostatically evoked slow-wave activity and that this mechanism is important for sustained antidepressant effects. Our observations urge the examination of rapid and sustained antidepressant effects beyond conventional receptor pharmacology by focusing on brain physiology and temporally distributed signalling patterns spanning both wake and sleep. Potential implications of this approach for the improvement of current therapies and discovery of novel antidepressants are discussed.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Receptor trkB/metabolismo , Anestesia , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacocinética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral , Eletroencefalografia , Humanos , Ketamina/farmacologia , Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal , Óxido Nitroso/farmacologia , Convulsões/metabolismo , Transdução de Sinais , Sono
7.
Prog Neurobiol ; 206: 102140, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403718

RESUMO

Depression is frequently associated with sleep problems, and clinical improvement often coincides with the normalization of sleep architecture and realignment of circadian rhythm. The effectiveness of treatments targeting sleep in depressed patients, such as sleep deprivation, further demonstrates the confluence of sleep and mood. Moreover, recent studies showing that the rapid-acting antidepressant ketamine influences processes related to sleep-wake neurobiology have led to novel hypotheses explaining rapid and sustained antidepressant effects. Despite the available evidence, studies addressing ketamine's antidepressant effects have focused on pharmacology and often overlooked the role of physiology. To explore this discrepancy in research on rapid-acting antidepressants, we examined articles published between 2009-2019. A keyword search algorithm indicated that vast majority of the articles completely ignored sleep. Out of the 100 most frequently cited preclinical and clinical research papers, 89 % and 71 %, respectively, did not mention sleep at all. Furthermore, only a handful of these articles disclosed key experimental variables, such as the times of treatment administration or behavioral testing, let alone considered the potential association between these variables and experimental observations. Notably, in preclinical studies, treatments were preferentially administered during the inactive period, which is the polar opposite of clinical practice and research. We discuss the potential impact of this practice on the results in the field. Our hope is that this perspective will serve as a wake-up call to (re)-examine rapid-acting antidepressant effects with more appreciation for the role of sleep and chronobiology.


Assuntos
Sono , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ritmo Circadiano/efeitos dos fármacos , Humanos , Ketamina/farmacologia , Sono/efeitos dos fármacos
8.
Neuropharmacology ; 157: 107684, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251996

RESUMO

Subanesthetic rather than anesthetic doses are thought to bring the rapid antidepressant effects of the NMDAR (N-methyl-d-aspartate receptor) antagonist ketamine. Among molecular mechanisms, activation of BDNF receptor TrkB along with the inhibition of GSK3ß (glycogen synthase kinase 3ß) are considered as critical molecular level determinants for ketamine's antidepressant effects. Hydroxynorketamines (2R,6R)-HNK and (2S,6S)-HNK), non-anesthetic metabolites of ketamine, have been proposed to govern the therapeutic effects of ketamine through a mechanism not involving NMDARs. However, we have shown that nitrous oxide, another NMDAR blocking anesthetic and a putative rapid-acting antidepressant, evokes TrkB-GSK3ß signaling alterations during rebound slow EEG (electroencephalogram) oscillations. We investigated here the acute effects of ketamine, 6,6-d2-ketamine (a ketamine analogue resistant to metabolism) and cis-HNK that contains (2R,6R) and (2S,6S) enantiomers in 1:1 ratio, on TrkB-GSK3ß signaling and concomitant electroencephalographic (EEG) alterations in the adult mouse cortex. Ketamine dose-dependently increased slow oscillations and phosphorylations of TrkBY816 and GSK3ßS9 in crude brain homogenates (i.e. sedative/anesthetic doses (>50 mg/kg, i.p.) produced more prominent effects than a subanesthetic dose (10 mg/kg, i.p.)). Similar, albeit less obvious, effects were seen in crude synaptosomes. A sedative dose of 6,6-d2-ketamine (100 mg/kg, i.p.) recapitulated the effects of ketamine on TrkB and GSK3ß phosphorylation while cis-HNK at a dose of 20 mg/kg produced negligible acute effects on TrkB-GSK3ß signaling or slow oscillations. These findings suggest that the acute effects of ketamine on TrkB-GSK3ß signaling are by no means restricted to subanesthetic (i.e. antidepressant) doses and that cis-HNK is not responsible for these effects.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Hipnóticos e Sedativos/farmacologia , Ketamina/análogos & derivados , Ketamina/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Encéfalo/metabolismo , Ondas Encefálicas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletroencefalografia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Sinaptossomos/metabolismo
9.
Mol Neurobiol ; 56(6): 4163-4174, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30288695

RESUMO

Rapid antidepressant effects of ketamine become most evident when its psychotomimetic effects subside, but the neurobiological basis of this "lag" remains unclear. Laughing gas (N2O), another NMDA-R (N-methyl-D-aspartate receptor) blocker, has been reported to bring antidepressant effects rapidly upon drug discontinuation. We took advantage of the exceptional pharmacokinetic properties of N2O to investigate EEG (electroencephalogram) alterations and molecular determinants of antidepressant actions during and immediately after NMDA-R blockade. Effects of the drugs on brain activity were investigated in C57BL/6 mice using quantitative EEG recordings. Western blot and qPCR were used for molecular analyses. Learned helplessness (LH) was used to assess antidepressant-like behavior. Immediate-early genes (e.g., bdnf) and phosphorylation of mitogen-activated protein kinase-markers of neuronal excitability-were upregulated during N2O exposure. Notably, phosphorylation of BDNF receptor TrkB and GSK3ß (glycogen synthase kinase 3ß) became regulated only gradually upon N2O discontinuation, during a brain state dominated by slow EEG activity. Subanesthetic ketamine and flurothyl-induced convulsions (reminiscent of electroconvulsive therapy) also evoked slow oscillations when their acute pharmacological effects subsided. The correlation between ongoing slow EEG oscillations and TrkB-GSK3ß signaling was further strengthened utilizing medetomidine, a hypnotic-sedative agent that facilitates slow oscillations directly through the activation of α2-adrenergic autoreceptors. Medetomidine did not, however, facilitate markers of neuronal excitability or produce antidepressant-like behavioral changes in LH. Our results support a hypothesis that transient cortical excitability and the subsequent regulation of TrkB and GSK3ß signaling during homeostatic emergence of slow oscillations are critical components for rapid antidepressant responses.


Assuntos
Antidepressivos/farmacologia , Córtex Cerebral/metabolismo , Eletroencefalografia , Neurônios/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Anestésicos/farmacologia , Animais , Biomarcadores/metabolismo , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flurotila/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Homeostase/efeitos dos fármacos , Ketamina/farmacologia , Medetomidina/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Óxido Nitroso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Sci Rep ; 7(1): 7811, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798343

RESUMO

A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3ß (GSK3ß). Moreover, isoflurane affected neuronal plasticity by facilitating long-term potentiation in the hippocampus. We also found that isoflurane increased activity of the parvalbumin interneurons, and facilitated GABAergic transmission in wild type mice but not in transgenic mice with reduced TrkB expression in parvalbumin interneurons. Our findings strengthen the role of TrkB signaling in the antidepressant responses and encourage further evaluation of isoflurane as a rapid-acting antidepressant devoid of the psychotomimetic effects and abuse potential of ketamine.


Assuntos
Antidepressivos/administração & dosagem , Hipocampo/fisiologia , Isoflurano/administração & dosagem , Receptor trkB/metabolismo , Animais , Antidepressivos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Desamparo Aprendido , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Isoflurano/farmacologia , Ketamina/farmacologia , Potenciação de Longa Duração , Masculino , Camundongos , Parvalbuminas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
11.
ACS Chem Neurosci ; 7(6): 749-56, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27074656

RESUMO

Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins-implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function-as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3ß (GSK3ß) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3ß and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3ß, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system.


Assuntos
Anestésicos Inalatórios/farmacologia , Hipocampo/efeitos dos fármacos , Isoflurano/farmacologia , Microtúbulos/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Anestesia/métodos , Animais , Masculino , Éteres Metílicos/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Sevoflurano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa