Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 152(1-2): 97-108, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332748

RESUMO

Stem and/or progenitor cells often generate distinct cell types in a stereotyped birth order and over time lose competence to specify earlier-born fates by unknown mechanisms. In Drosophila, the Hunchback transcription factor acts in neural progenitors (neuroblasts) to specify early-born neurons, in part by indirectly inducing the neuronal transcription of its target genes, including the hunchback gene. We used in vivo immuno-DNA FISH and found that the hunchback gene moves to the neuroblast nuclear periphery, a repressive subnuclear compartment, precisely when competence to specify early-born fate is lost and several hours and cell divisions after termination of its transcription. hunchback movement to the lamina correlated with downregulation of the neuroblast nuclear protein, Distal antenna (Dan). Either prolonging Dan expression or disrupting lamina interfered with hunchback repositioning and extended neuroblast competence. We propose that neuroblasts undergo a developmentally regulated subnuclear genome reorganization to permanently silence Hunchback target genes that results in loss of progenitor competence.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Células-Tronco Neurais/citologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo
2.
Nat Rev Neurosci ; 14(12): 823-38, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24400340

RESUMO

The vast diversity of neurons and glia of the CNS is generated from a small, heterogeneous population of progenitors that undergo transcriptional changes during development to sequentially specify distinct cell fates. Guided by cell-intrinsic and -extrinsic cues, invertebrate and mammalian neural progenitors carefully regulate when and how many of each cell type is produced, enabling the formation of functional neural circuits. Emerging evidence indicates that neural progenitors also undergo changes in global chromatin architecture, thereby restricting when a particular cell type can be generated. Studies of temporal-identity specification and progenitor competence can provide insight into how we could use neural progenitors to more effectively generate specific cell types for brain repair.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Neuroglia/fisiologia
3.
PLoS Genet ; 8(2): e1002515, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22347817

RESUMO

miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.


Assuntos
Drosophila melanogaster/genética , MicroRNAs/genética , Mutação/genética , Neurogênese/genética , Junção Neuromuscular/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Locomoção/genética , Junção Neuromuscular/fisiologia , Fenótipo , Células Receptoras Sensoriais/patologia , Transdução de Sinais/genética , Sinapses/patologia , Transcriptoma/genética
4.
Development ; 138(9): 1727-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21429984

RESUMO

A fundamental question in brain development is how precursor cells generate a diverse group of neural progeny in an ordered manner. Drosophila neuroblasts sequentially express the transcription factors Hunchback (Hb), Krüppel (Kr), Pdm1/Pdm2 (Pdm) and Castor (Cas). Hb is necessary and sufficient to specify early-born temporal identity and, thus, Hb downregulation is essential for specification of later-born progeny. Here, we show that distal antenna (dan) and distal antenna-related (danr), encoding pipsqueak motif DNA-binding domain protein family members, are detected in all neuroblasts during the Hb-to-Cas expression window. Dan and Danr are required for timely downregulation of Hb in neuroblasts and for limiting the number of early-born neurons. Dan and Danr function independently of Seven-up (Svp), an orphan nuclear receptor known to repress Hb expression in neuroblasts, because Dan, Danr and Svp do not regulate each other and dan danr svp triple mutants have increased early-born neurons compared with either dan danr or svp mutants. Interestingly, misexpression of Hb can induce Dan and Svp expression in neuroblasts, suggesting that Hb might activate a negative feedback loop to limit its own expression. We conclude that Dan/Danr and Svp act in parallel pathways to limit Hb expression and allow neuroblasts to transition from making early-born neurons to late-born neurons at the proper time.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Modelos Biológicos , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Receptores de Esteroides/genética , Receptores de Esteroides/fisiologia , Fatores de Tempo , Distribuição Tecidual , Fatores de Transcrição/genética
5.
Nat Commun ; 15(1): 5097, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877037

RESUMO

Genome organization is thought to underlie cell type specific gene expression, yet how it is regulated in progenitors to produce cellular diversity is unknown. In Drosophila, a developmentally-timed genome reorganization in neural progenitors terminates competence to produce early-born neurons. These events require downregulation of Distal antenna (Dan), part of the conserved pipsqueak DNA-binding superfamily. Here we find that Dan forms liquid-like condensates with high protein mobility, and whose size and subnuclear distribution are balanced with its DNA-binding. Further, we identify a LARKS domain, a structural motif associated with condensate-forming proteins. Deleting just 13 amino acids from LARKS abrogates Dan's ability to retain the early-born neural fate gene, hunchback, in the neuroblast nuclear interior and maintain competence in vivo. Conversely, domain-swapping with LARKS from known phase-separating proteins rescues Dan's effects on competence. Together, we provide in vivo evidence for condensate formation and the regulation of progenitor nuclear architecture underlying neuronal diversification.


Assuntos
Núcleo Celular , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Células-Tronco Neurais , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Neurônios/citologia , Domínios Proteicos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
Neural Dev ; 17(1): 3, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177098

RESUMO

BACKGROUND: Neural progenitors produce diverse cells in a stereotyped birth order, but can specify each cell type for only a limited duration. In the Drosophila embryo, neuroblasts (neural progenitors) specify multiple, distinct neurons by sequentially expressing a series of temporal identity transcription factors with each division. Hunchback (Hb), the first of the series, specifies early-born neuronal identity. Neuroblast competence to generate early-born neurons is terminated when the hb gene relocates to the neuroblast nuclear lamina, rendering it refractory to activation in descendent neurons. Mechanisms and trans-acting factors underlying this process are poorly understood. Here we identify Corto, an enhancer of Trithorax/Polycomb (ETP) protein, as a new regulator of neuroblast competence. METHODS: We used the GAL4/UAS system to drive persistent misexpression of Hb in neuroblast 7-1 (NB7-1), a model lineage for which the early competence window has been well characterized, to examine the role of Corto in neuroblast competence. We used immuno-DNA Fluorescence in situ hybridization (DNA FISH) in whole embryos to track the position of the hb gene locus specifically in neuroblasts across developmental time, comparing corto mutants to control embryos. Finally, we used immunostaining in whole embryos to examine Corto's role in repression of Hb and a known target gene, Abdominal B (Abd-B). RESULTS: We found that in corto mutants, the hb gene relocation to the neuroblast nuclear lamina is delayed and the early competence window is extended. The delay in gene relocation occurs after hb transcription is already terminated in the neuroblast and is not due to prolonged transcriptional activity. Further, we find that Corto genetically interacts with Posterior Sex Combs (Psc), a core subunit of polycomb group complex 1 (PRC1), to terminate early competence. Loss of Corto does not result in derepression of Hb or its Hox target, Abd-B, specifically in neuroblasts. CONCLUSIONS: These results show that in neuroblasts, Corto genetically interacts with PRC1 to regulate timing of nuclear architecture reorganization and support the model that distinct mechanisms of silencing are implemented in a step-wise fashion during development to regulate cell fate gene expression in neuronal progeny.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais , Fatores de Transcrição/genética , Animais , Drosophila , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente , Células-Tronco Neurais/fisiologia , Neurônios
7.
Dev Cell ; 56(18): 2649-2663.e6, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34529940

RESUMO

The nuclear lamina is typically associated with transcriptional silencing, and peripheral relocation of genes highly correlates with repression. However, the DNA sequences and proteins regulating gene-lamina interactions are largely unknown. Exploiting the developmentally timed hunchback gene movement to the lamina in Drosophila neuroblasts, we identified a 250 bp intronic element (IE) both necessary and sufficient for relocation. The IE can target a reporter transgene to the lamina and silence it. Endogenously, however, hunchback is already repressed prior to relocation. Instead, IE-mediated relocation confers a heritably silenced gene state refractory to activation in descendent neurons, which terminates neuroblast competence to specify early-born identity. Surprisingly, we found that the Polycomb group chromatin factors bind the IE and are required for lamina relocation, revealing a nuclear architectural role distinct from their well-known function in transcriptional repression. Together, our results uncover in vivo mechanisms underlying neuroblast competence and lamina association in heritable gene silencing.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo
8.
Curr Opin Neurobiol ; 59: 146-156, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299459

RESUMO

One of the hallmarks of the metazoan genome is that genes are non-randomly positioned within the cell nucleus; in fact, the entire genome is packaged in a highly organized manner to orchestrate proper gene expression for each cell type. This is an especially daunting task for the development of the brain, which consists of an incredibly diverse population of neural cells. How genome architecture is established, maintained, and regulated to promote diverse cell fates and functions are fascinating questions with important implications in development and disease. The explosion in various biochemical and imaging techniques to analyze chromatin is now making it possible to interrogate the genome at an unprecedented resolution. Here we will focus on current advances in understanding genome architecture and gene regulation in the context of neural development.


Assuntos
Cromatina , Genoma , Animais , Núcleo Celular , Regulação da Expressão Gênica , Insetos , Mamíferos
9.
J Neurosci ; 27(26): 6878-91, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17596436

RESUMO

The subventricular zone (SVZ) of the postnatal brain continuously generates olfactory bulb (OB) interneurons. We show that calretinin+, calbindin+, and dopaminergic (TH+) periglomerular OB interneurons correspond to distinct subtypes of GABAergic cells; all were produced in the postnatal mouse brain, but they matured and were eliminated at different rates. The embryonic lateral ganglionic eminence (LGE) is thought to be the site of origin of postnatal SVZ neural progenitors. Consistently, grafts of the embryonic LGE into the adult brain SVZ generated many OB interneurons, including TH+ and calbindin+ periglomerular interneurons. However, calretinin+ cells were not produced from these LGE grafts. Surprisingly, pallial and septal embryonic progenitors transplanted into the adult brain SVZ also resulted in the generation of OB interneurons, including calretinin+ cells. A subset of Dlx2+ OB interneurons was derived from cells expressing Emx1, a transcription factor largely restricted to the pallium during development. Emx1 lineage-derived cells contributed a substantial portion of GABAergic cells in the OB, including calretinin+ interneurons. This is in contrast to cortex, in which Emx1 lineage-derived cells do not differentiate into GABAergic neurons. Our results suggest that some OB interneurons are derived from progenitors outside the LGE and that precursors expressing what has classically been considered a pallial transcription factor generate GABAergic interneurons.


Assuntos
Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Bulbo Olfatório/embriologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Transplante de Tecido Encefálico , Calbindina 2 , Calbindinas , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Dopamina/metabolismo , Sobrevivência de Enxerto/fisiologia , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Células-Tronco/citologia , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/metabolismo
10.
Neural Dev ; 12(1): 1, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137283

RESUMO

BACKGROUND: Drosophila and mammalian neural progenitors typically generate a diverse family of neurons in a stereotyped order. Neuronal diversity can be generated by the sequential expression of temporal transcription factors. In Drosophila, neural progenitors (neuroblasts) sequentially express the temporal transcription factors Hunchback (Hb), Kruppel, Pdm, and Castor. Hb is necessary and sufficient to specify early-born neuronal identity in multiple lineages, and is maintained in the post-mitotic neurons produced during each neuroblast expression window. Surprisingly, nothing is currently known about whether Hb acts in neuroblasts or post-mitotic neurons (or both) to specify first-born neuronal identity. METHODS: Here we selectively remove Hb from post-mitotic neurons, and assay the well-characterized NB7-1 and NB1-1 lineages for defects in neuronal identity and function. RESULTS: We find that loss of Hb from embryonic and larval post-mitotic neurons does not affect neuronal identity. Furthermore, removing Hb from post-mitotic neurons throughout the entire CNS has no effect on larval locomotor velocity, a sensitive assay for motor neuron and pre-motor neuron function. CONCLUSIONS: We conclude that Hb functions in progenitors (neuroblasts/GMCs) to establish heritable neuronal identity that is maintained by a Hb-independent mechanism. We suggest that Hb acts in neuroblasts to establish an epigenetic state that is permanently maintained in early-born neurons.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Neurônios Motores/fisiologia , Células-Tronco Neurais/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Locomoção , Mitose , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética
11.
J Neurosci ; 25(30): 6997-7003, 2005 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16049175

RESUMO

The subventricular zone (SVZ) produces different subclasses of olfactory bulb (OB) interneurons throughout life. Little is known about the molecular mechanisms controlling the production of different types of interneurons. Here we show that most proliferating adult SVZ progenitors express the transcription factor Pax6, but only a small subpopulation of migrating neuroblasts and new OB interneurons derived from these progenitors retains Pax6 expression. To elucidate the cell-autonomous role of Pax6 in OB neurogenesis, we transplanted green fluorescent protein-expressing embryonic forebrain progenitors of the dorsal lateral ganglionic eminence from Pax6 mutant Small Eye (Pax6(Sey/Sey)) mice into the SVZ of adult wild-type mice. Pax6(Sey/Sey) progenitors produce neuroblasts capable of migrating into the OB but fail to generate dopaminergic periglomerular and superficial granule cells. Interestingly, superficial granule neurons also express mRNA for tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Our data show that SVZ neuroblasts are heterogeneous and that Pax6 is required in a cell-autonomous manner for the production of cells in the dopaminergic lineage.


Assuntos
Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Fatores de Transcrição Box Pareados/fisiologia , Proteínas Repressoras/fisiologia , Células-Tronco/citologia , Animais , Transplante de Tecido Encefálico , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Dopamina/fisiologia , Proteínas do Olho/genética , Feminino , Transplante de Tecido Fetal , Proteínas de Homeodomínio/genética , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Gravidez , Proteínas Repressoras/genética , Células-Tronco/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
12.
J Neurosci ; 23(16): 6567-75, 2003 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-12878698

RESUMO

We used deletion mutants to study beta-catenin function in axon arborization of retinal ganglion cells (RGCs) in live Xenopus laevis tadpoles. A deletion mutant betacatDeltaARM consists of the N- and C-terminal domains of wild-type beta-catenin that contain, respectively, alpha-catenin and postsynaptic density-95 (PSD-95)/discs large (Dlg)/zona occludens-1 (ZO-1) (PDZ) binding sites but lacks the central armadillo repeat region that binds cadherins and other proteins. Expression of DeltaARM in RGCs of live tadpoles perturbed axon arborization in two distinct ways: some RGC axons did not form arbors, whereas the remaining RGC axons formed arbors with abnormally long and tangled branches. Expression of the N- and C-terminal domains of beta-catenin separately in RGCs resulted in segregation of these two phenotypes. The axons of RGCs overexpressing the N-terminal domain of beta-catenin developed no or very few branches, whereas axons of RGCs overexpressing the C-terminal domain of beta-catenin formed arbors with long, tangled branches. Additional analysis revealed that the axons of RGCs that did not form arbors after overexpression of DeltaARM or the N-terminal domain of beta-catenin were frequently mistargeted within the tectum. These results suggest that interactions of the N-terminal domain of beta-catenin with alpha-catenin and of the C-terminal domain with PDZ domain-containing proteins are required, respectively, to initiate and shape axon arbors of RGCs in vivo.


Assuntos
Axônios/fisiologia , Proteínas do Citoesqueleto/fisiologia , Células Ganglionares da Retina/metabolismo , Transativadores/fisiologia , Animais , Axônios/efeitos dos fármacos , Caderinas/biossíntese , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/farmacologia , Proteínas de Fluorescência Verde , Larva , Proteínas Luminescentes , Mutagênese Sítio-Dirigida , Neurópilo/metabolismo , Estrutura Terciária de Proteína/fisiologia , Células Ganglionares da Retina/citologia , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Transativadores/genética , Transativadores/farmacologia , Proteínas de Xenopus , Xenopus laevis , beta Catenina
13.
J Neurosci ; 22(15): 6415-25, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12151521

RESUMO

Members of the postsynaptic density-95 (PSD95)/synapse-associated protein-90 (SAP90) family of scaffolding proteins contain a common set of modular protein interaction motifs including PDZ (postsynaptic density-95/Discs large/zona occludens-1), Src homology 3, and guanylate kinase domains, which regulate signaling and plasticity at excitatory synapses. We report that N-terminal alternative splicing of PSD95 generates an isoform, PSD95beta that contains an additional "L27" motif, which is also present in SAP97. Using yeast two hybrid and coimmunoprecipitation assays, we demonstrate that this N-terminal L27 domain of PSD-95beta, binds to an L27 domain in the membrane-associated guanylate kinase calcium/calmodulin-dependent serine kinase, and to Hrs, an endosomal ATPase that regulates vesicular trafficking. By transfecting heterologous cells and hippocampal neurons, we find that interactions with the L27 domain regulate synaptic clustering of PSD95beta. Disrupting Hrs-regulated early endosomal sorting in hippocampal neurons selectively blocks synaptic clustering of PSD95beta but does not interfere with trafficking of the palmitoylated isoform, PSD95alpha. These studies identify molecular and functional heterogeneity in synaptic PSD95 complexes and reveal critical roles for L27 domain interactions and Hrs regulated vesicular trafficking in postsynaptic protein clustering.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Processamento Alternativo/genética , Motivos de Aminoácidos/fisiologia , Animais , Células COS , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Proteína 1 Homóloga a Discs-Large , Proteína 4 Homóloga a Disks-Large , Complexos Endossomais de Distribuição Requeridos para Transporte , Guanilato Quinases , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Proteínas de Membrana , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Fosfoproteínas/metabolismo , Testes de Precipitina , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Ratos , Roedores , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
14.
Cell Rep ; 2(4): 1002-13, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23063363

RESUMO

Here, we describe the embryonic central nervous system expression of 5,000 GAL4 lines made using molecularly defined cis-regulatory DNA inserted into a single attP genomic location. We document and annotate the patterns in early embryos when neurogenesis is at its peak, and in older embryos where there is maximal neuronal diversity and the first neural circuits are established. We note expression in other tissues, such as the lateral body wall (muscle, sensory neurons, and trachea) and viscera. Companion papers report on the adult brain and larval imaginal discs, and the integrated data sets are available online (http://www.janelia.org/gal4-gen1). This collection of embryonically expressed GAL4 lines will be valuable for determining neuronal morphology and function. The 1,862 lines expressed in small subsets of neurons (<20/segment) will be especially valuable for characterizing interneuronal diversity and function, because although interneurons comprise the majority of all central nervous system neurons, their gene expression profile and function remain virtually unexplored.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/crescimento & desenvolvimento , Bases de Dados Factuais , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Feminino , Expressão Gênica , Genes Reporter , Internet , Masculino , Elementos Reguladores de Transcrição , Fatores de Transcrição/genética
15.
Cell Stem Cell ; 5(6): 577-8, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19951685

RESUMO

Neuronal diversity is generated from small pools of progenitors whose fate potential changes over time. Recently in Cell, Baumgardt et al. (2009) showed that multiple, simultaneously activated transcriptional cascades regulate the timing and specification of distinct neurons from the lineage of a single embryonic Drosophila neural stem cell.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa