Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 32(5): 558-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26982889

RESUMO

Introduction The reliability of hyperthermia treatment planning (HTP) is strongly dependent on the accuracy of the electric properties of each tissue. The values currently used are mostly based on ex vivo measurements. In this study, in vivo conductivity of human muscle, bladder content and cervical tumours, acquired with magnetic resonance-based electric properties tomography (MR-EPT), are exploited to investigate the effect on HTP for cervical cancer patients. Methods Temperature-based optimisation of five different patients was performed using literature-based conductivity values yielding certain antenna settings, which are then used to compute the temperature distribution of the patient models with EPT-based conductivity values. Furthermore, the effects of altered bladder and muscle conductivity were studied separately. Finally, the temperature-based optimisation was performed with patient models based on EPT conductivity values. Results The tumour temperatures for all EPT-based dielectric patient models were lower compared to the optimal tumour temperatures based on literature values. The largest deviation was observed for patient 1 with ΔT90 = -1.37 °C. A negative impact was also observed when the treatment was optimised based on the EPT values. For four patients ΔT90 was less than 0.6 °C; for one patient it was 1.5 °C. Conclusions Electric conductivity values acquired by EPT are higher than commonly used from literature. This difference has a substantial impact on cervical tumour temperatures achieved during hyperthermia. A higher conductivity in the bladder and in the muscle tissue surrounding the tumour leads to higher power dissipation in the bladder and muscle, and therefore to lower tumour temperatures.


Assuntos
Condutividade Elétrica , Hipertermia Induzida , Neoplasias do Colo do Útero/terapia , Feminino , Humanos , Músculos/diagnóstico por imagem , Temperatura , Tomografia/métodos , Bexiga Urinária/diagnóstico por imagem , Neoplasias do Colo do Útero/diagnóstico por imagem
2.
Cancers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291685

RESUMO

Background: Accurate monitoring of skin surface temperatures is necessary to ensure treatment quality during superficial hyperthermia. A high-resolution thermal monitoring sheet (TMS) was developed to monitor the skin surface temperature distribution. The influence of the TMS on applicator performance was investigated, feasibility and ability to reliably monitor the temperature distribution were evaluated in a clinical study. Methods: Phantom experiments were performed to determine the influence of the TMS on power deposition patterns, applicator efficiency, and heat transfer of the water bolus for 434 and 915 MHz applicators. Clinical feasibility was evaluated in 10 women with locoregional recurrent breast cancer. Skin surface temperatures during consecutive treatments were monitored alternatingly with either standard Amsterdam UMC thermometry or TMS. Treatments were compared using (generalized) linear mixed models. Results: The TMS did not significantly affect power deposition patterns and applicator efficiency (1-2%), the reduced heat transfer of the water boluses (51-56%) could be compensated by adjusting the water bolus flow. Skin surface temperatures were monitored reliably, and no alteration of thermal toxicity was observed compared to standard Amsterdam UMC thermometry. Conclusion: Clinical application of the TMS is feasible. Power deposition patterns and applicator efficiency were not affected. Surface temperatures were monitored reliably.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa