RESUMO
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Assuntos
Endotélio Vascular , Pulmão , Humanos , Pulmão/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Animais , Estados Unidos , Sociedades Médicas , Pneumopatias/patologia , Pneumopatias/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologiaRESUMO
Pulmonary hypertension (PH) is a condition in which remodeling of the pulmonary vasculature leads to hypertrophy of the muscular vascular wall and extension of muscle into nonmuscular arteries. These pathological changes are predominantly due to the abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), enhanced cellular functions that have been linked to increases in the cell membrane protein aquaporin 1 (AQP1). However, the mechanisms underlying the increased AQP1 abundance have not been fully elucidated. Here we present data that establishes a novel interaction between AQP1 and the proteolytic enzyme caspase-3. In silico analysis of the AQP1 protein reveals two caspase-3 cleavage sites on its C-terminal tail, proximal to known ubiquitin sites. Using biotin proximity ligase techniques, we establish that AQP1 and caspase-3 interact in both human embryonic kidney (HEK) 293A cells and rat PASMCs. Furthermore, we demonstrate that AQP1 levels increase and decrease with enhanced caspase-3 activity and inhibition, respectively. Ultimately, further work characterizing this interaction could provide the foundation for novel PH therapeutics.NEW & NOTEWORTHY Pulmonary arterial smooth muscle cells (PASMCs) are integral to pulmonary vascular remodeling, a characteristic of pulmonary arterial hypertension (PAH). PASMCs isolated from robust animal models of disease demonstrate enhanced proliferation and migration, pathological functions associated with increased abundance of the membrane protein aquaporin 1 (AQP1). We present evidence of a novel interaction between the proteolytic enzyme caspase-3 and AQP1, which may control AQP1 abundance. These data suggest a potential new target for novel PAH therapies.
Assuntos
Aquaporina 1 , Caspase 3 , Músculo Liso Vascular , Miócitos de Músculo Liso , Artéria Pulmonar , Animais , Humanos , Masculino , Ratos , Aquaporina 1/metabolismo , Aquaporina 1/genética , Caspase 3/metabolismo , Proliferação de Células , Células HEK293 , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-DawleyRESUMO
BACKGROUND: Pulmonary arterial hypertension (PAH) is characterised by poor exercise tolerance. The contribution of right ventricular (RV) diastolic function to the augmentation of cardiac output during exercise is not known. This study leverages pressure-volume (P-V) loop analysis to characterise the impact of RV diastology on poor flow augmentation during exercise in PAH. METHODS: RV P-V loops were measured in 41 PAH patients at rest and during supine bike exercise. Patients were stratified by median change in cardiac index (CI) during exercise into two groups: high and low CI reserve. Indices of diastolic function (end-diastolic elastance (E ed)) and ventricular interdependence (left ventricular transmural pressure (LVTMP)) were compared at matched exercise stages. RESULTS: Compared to patients with high CI reserve, those with low reserve exhibited lower exercise stroke volume (36 versus 49â mL·m-2; p=0.0001), with higher associated exercise afterload (effective arterial elastance (E a) 1.76 versus 0.90â mmHg·mL-1; p<0.0001), RV stiffness (E ed 0.68 versus 0.26â mmHg·mL-1; p=0.003) and right-sided pressures (right atrial pressure 14 versus 8â mmHg; p=0.002). Higher right-sided pressures led to significantly lower LV filling among the low CI reserve subjects (LVTMP -4.6 versus 3.2â mmHg; p=0.0001). Interestingly, low exercise flow reserve correlated significantly with high afterload and RV stiffness, but not with RV contractility nor RV-PA coupling. CONCLUSIONS: Patients with poor exercise CI reserve exhibit poor exercise RV afterload, stiffness and right-sided filling pressures that depress LV filling and stroke work. High afterload and RV stiffness were the best correlates to low flow reserve in PAH. Exercise unmasked significant pathophysiological PAH differences unapparent at rest.
Assuntos
Débito Cardíaco , Hipertensão Arterial Pulmonar , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Hipertensão Arterial Pulmonar/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Tolerância ao Exercício , Função Ventricular Direita , Teste de Esforço , Volume Sistólico , Idoso , Ventrículos do Coração/fisiopatologia , Exercício Físico/fisiologia , DiástoleRESUMO
Rationale: To date, it remains unclear whether recent changes in the management of patients with systemic sclerosis-associated pulmonary hypertension (SSc-PH) have improved survival. Objectives: To describe a cohort of patients with SSc-PH and compare their characteristics and survival between the last two decades. Methods: Patients with SSc-PH prospectively enrolled in the Johns Hopkins Pulmonary Hypertension Center Registry were grouped into two cohorts based on the date of diagnostic right heart catheterization: cohort A included patients whose disease was diagnosed between 1999 and 2010, and cohort B included those whose disease was diagnosed between 2010 and 2021. Patients' characteristics were compared between the two cohorts. Measurements and Main Results: Of 504 patients with SSc-PH distributed almost equally between the two cohorts, 308 (61%) had World Symposium on Pulmonary Hypertension group 1, 43 (9%) had group 2, and 151 (30%) had group 3 disease. Patients with group 1 disease in cohort B had significantly better clinical and hemodynamic characteristics at diagnosis, were more likely to receive upfront combination pulmonary arterial hypertension therapy, and had a nearly 4-year increase in median transplant-free survival in univariable analysis than those in cohort A (P < 0.01). Improved transplant-free survival was still observed after adjusting for patients' baseline characteristics. In contrast, for group 2 or 3 patients with SSc-PH, there were no differences in baseline clinical, hemodynamic, or survival characteristics between the two cohorts. Conclusions: This is the largest single-center study that compares clinical characteristics of patients with SSc-PH between the last two decades. Transplant-free survival has improved significantly for those with group 1 disease over the last decade, possibly secondary to earlier detection and better therapeutic management. Conversely, those with group 2 or 3 disease continue to have dismal prognosis.
Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Hipertensão Arterial Pulmonar/terapia , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/diagnóstico , Escleroderma Sistêmico/complicações , Hipertensão Pulmonar Primária Familiar/complicações , Sistema de RegistrosRESUMO
Non-small cell lung cancers (NSCLCs) demonstrate intrinsic resistance to cell death, even after chemotherapy. Previous work suggested defective nuclear translocation of active caspase-3 in observed resistance to cell death. We have identified mitogen-activated protein kinase-activated protein kinase 2 (MK2; encoded by the gene MAPKAPK2) is required for caspase-3 nuclear translocation in the execution of apoptosis in endothelial cells. The objective was to determine MK2 expression in NSCLCs and the association between MK2 and clinical outcomes in patients with NSCLC. Clinical and MK2 mRNA data were extracted from two demographically distinct NSCLC clinical cohorts, North American (The Cancer Genome Atlas, TCGA) and East Asian (EA). Tumor responses following first round of chemotherapy were dichotomized as clinical response (complete response, partial response, and stable disease) or progression of disease. Multivariable survival analyses were performed using Cox proportional hazard ratios and Kaplan-Meier curves. NSCLC exhibited lower MK2 expression than SCLC cell lines. In patients, lower tumor MK2 transcript levels were observed in those presenting with late-stage NSCLC. Higher MK2 expression was associated with clinical response following initial chemotherapy and independently associated with improved 2-yr survival in two distinct cohorts, 0.52 (0.28-0.98) and 0.1 (0.01-0.81), TCGA and EA, respectively, even after adjusting for common oncogenic driver mutations. Survival benefit of higher MK2 expression was unique to lung adenocarcinoma when comparing across various cancers. This study implicates MK2 in apoptosis resistance in NSCLC and suggests prognostic value of MK2 transcript levels in patients with lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Caspase 3/uso terapêutico , Células Endoteliais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genéticaRESUMO
Right ventricular (RV) adaptation is the principal determinant of outcomes in pulmonary arterial hypertension (PAH), however, RV function is challenging to assess. RV responses to hemodynamic stressors are particularly difficult to interrogate without invasive testing. This study sought to identify metabolomic markers of in vivo right ventricular function and exercise performance in PAH. Consecutive subjects with PAH (n = 23) underwent rest and exercise right heart catheterization with multibeat pressure volume loop analysis. Pulmonary arterial blood was collected at rest and during exercise. Mass spectrometry-based targeted metabolomics were performed, and metabolic associations with hemodynamics and comprehensive measures of RV function were determined using sparse partial least squares regression. Metabolite profiles were compared with N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) measurements for accuracy in modeling ventriculo-arterial parameters. Thirteen metabolites changed in abundance with exercise, including metabolites reflecting increased arginine bioavailability, precursors of catecholamine and nucleotide synthesis, and branched-chain amino acids. Higher resting arginine bioavailability predicted more favorable exercise hemodynamics and pressure-flow relationships. Subjects with more severe PAH augmented arginine bioavailability with exercise to a greater extent than subjects with less severe PAH. We identified relationships between kynurenine pathway metabolism and impaired ventriculo-arterial coupling, worse RV diastolic function, lower RV contractility, diminished RV contractility with exercise, and RV dilation with exercise. Metabolite profiles outperformed NT-proBNP in modeling RV contractility, diastolic function, and exercise performance. Specific metabolite profiles correspond to RV functional measurements only obtainable via invasive pressure-volume loop analysis and predict RV responses to exercise. Metabolic profiling may inform discovery of RV functional biomarkers.NEW & NOTEWORTHY In this cohort of patients with pulmonary arterial hypertension (PAH), we investigate metabolomic associations with comprehensive right ventricular (RV) functional measurements derived from multibeat RV pressure-volume loop analysis. Our results show that tryptophan metabolism, particularly the kynurenine pathway, is linked to intrinsic RV function and PAH pathobiology. Findings also highlight the importance of arginine bioavailability in the cardiopulmonary system's response to exercise stress. Metabolite profiles selected via unbiased analysis outperformed N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) in predicting load-independent measures of RV function at rest and cardiopulmonary system performance under stress. Overall, this work suggests the potential for select metabolites to function as disease-specific biomarkers, offers insights into PAH pathobiology, and informs discovery of potentially targetable RV-centric pathways.
Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Peptídeo Natriurético Encefálico , Função Ventricular Direita/fisiologia , Cinurenina , Hipertensão Pulmonar Primária Familiar , Biomarcadores , ArgininaRESUMO
We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apoptose , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Pulmonary hypertension (PH) is a disease that has many etiologies and is particularly prevalent in patients presenting for cardiac surgery, with which it is linked to poor outcomes. This manuscript is intended to provide a comprehensive review of the impact of PH on the perioperative management of patients who are undergoing cardiac surgery. The diagnosis of PH often involves a combination of noninvasive and invasive testing, whereas preoperative optimization frequently necessitates the use of specific medications that affect anesthetic management of these patients. The authors postulate that a thoughtful, multidisciplinary approach is required to deliver excellent perioperative care. Furthermore, they use an index case to illustrate the implications of managing a patient with pulmonary hypertension who presents for cardiac surgery with cardiopulmonary bypass.
Assuntos
Anestésicos , Procedimentos Cirúrgicos Cardíacos , Hipertensão Pulmonar , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/cirurgia , Assistência PerioperatóriaRESUMO
BACKGROUND: Angiopoietin-1 and 2 (Ang1, Ang2) are important mediators of angiogenesis. Angiopoietin levels are perturbed in cardiovascular disease, but it is unclear whether angiopoietin signaling is causative, an adaptive response, or merely epiphenomenon of disease activity. METHODS AND RESULTS: In a cohort free of cardiovascular disease at baseline (Multi-Ethnic Study of Atherosclerosis [MESA]), relationships between angiopoietins, cardiac morphology, and subsequent incidence of heart failure or cardiovascular death were evaluated. In cohorts with pulmonary arterial hypertension or left heart disease, associations between angiopoietins, invasive hemodynamics, and adverse clinical outcomes were evaluated. In MESA, Ang2 was associated with a higher incidence of heart failure or cardiovascular death (hazard ratio 1.21 per standard deviation, P < .001). Ang2 was associated with increased right atrial pressure (pulmonary arterial hypertension cohort) and increased wedge pressure and right atrial pressure (left heart disease cohort). Elevated Ang2 was associated with mortality in the pulmonary arterial hypertension cohort. CONCLUSIONS: Ang2 was associated with incident heart failure or death among adults without cardiovascular disease at baseline and with disease severity in individuals with existing heart failure. Our finding that Ang2 is increased before disease onset and that elevations reflect disease severity, suggests Ang2 may contribute to heart failure pathogenesis.
Assuntos
Angiopoietina-2/metabolismo , Doenças Cardiovasculares , Insuficiência Cardíaca , Adulto , Angiopoietina-1/metabolismo , Angiopoietinas , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , Incidência , Índice de Gravidade de DoençaRESUMO
Pulmonary arterial hypertension (PAH) is an incurable disease characterized by disordered and dysfunctional angiogenesis leading to small-vessel loss and an obliterative vasculopathy. The pathogenesis of PAH is not fully understood, but multiple studies have demonstrated links between elevated angiostatic factors, disease severity, and adverse clinical outcomes. ES (endostatin), one such circulating angiostatic peptide, is the cleavage product of the proteoglycan COL18A1 (collagen α1[XVIII] chain). Elevated serum ES is associated with increased mortality and disease severity in PAH. A nonsynonymous variant of ES (aspartic acid-to-asparagine substitution at amino acid 104; p.D104N) is associated with differences in PAH survival. Although COL18A1/ES expression is markedly increased in remodeled pulmonary vessels in PAH, the impact of ES on pulmonary endothelial cell (PEC) biology and molecular contributions to PAH severity remain undetermined. In the present study, we characterized the effects of exogenous ES on human PEC biology and signaling. We demonstrated that ES inhibits PEC migration, proliferation, and cell survival, with significant differences between human variants, indicating that they are functional genetic variants. ES promotes proteasome-mediated degradation of the transcriptional repressor ID1, increasing expression and release of TSP-1 (thrombospondin 1). ES inhibits PEC migration via an ID1/TSP-1/CD36-dependent pathway, in contrast to proliferation and apoptosis, which require both CD36 and CD47. Collectively, the data implicate ES as a novel negative regulator of ID1 and an upstream propagator of an angiostatic signal cascade converging on CD36 and CD47, providing insight into the cellular and molecular effects of a functional genetic variant linked to altered outcomes in PAH.
Assuntos
Colágeno Tipo VIII/metabolismo , Endostatinas/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Pulmão/metabolismo , Apoptose/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Colágeno Tipo XVIII/metabolismo , Genética Humana/métodos , Humanos , Transdução de Sinais/fisiologiaRESUMO
BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease that results from cardio-pulmonary dysfunction with the pathology largely unknown. Insulin-like growth factor binding protein 2 (IGFBP2) is an important member of the insulin-like growth factor family, with evidence suggesting elevation in PAH patients. We investigated the diagnostic and prognostic value of serum IGFBP2 in PAH to determine if it could discriminate PAH from healthy controls and if it was associated with disease severity and survival. METHODS: Serum IGFBP2 levels, as well as IGF1/2 levels, were measured in two independent PAH cohorts, the Johns Hopkins Pulmonary Hypertension program (JHPH, N = 127), NHLBI PAHBiobank (PAHB, N = 203), and a healthy control cohort (N = 128). The protein levels in lung tissues were determined by western blot. The IGFBP2 mRNA expression levels in pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) were assessed by RNA-seq, secreted protein levels by ELISA. Association of biomarkers with clinical variables was evaluated using adjusted linear or logistic regression and Kaplan-Meier analysis. RESULTS: In both PAH cohorts, serum IGFBP2 levels were significantly elevated (p < 0.0001) compared to controls and discriminated PAH from controls with an AUC of 0.76 (p < 0.0001). A higher IGFBP2 level was associated with a shorter 6-min walk distance (6MWD) in both cohorts after adjustment for age and sex (coefficient - 50.235 and - 57.336 respectively). Cox multivariable analysis demonstrated that higher serum IGFBP2 was a significant independent predictor of mortality in PAHB cohort only (HR, 3.92; 95% CI, 1.37-11.21). IGF1 levels were significantly increased only in the PAHB cohort; however, neither IGF1 nor IGF2 had equivalent levels of associations with clinical variables compared with IGFBP2. Western blotting shown that IGFBP2 protein was significantly increased in the PAH vs control lung tissues. Finally, IGFBP2 mRNA expression and secreted protein levels were significantly higher in PASMC than in PAEC. CONCLUSIONS: IGFBP2 protein expression was increased in the PAH lung, and secreted by PASMC. Elevated circulating IGFBP2 was associated with PAH severity and mortality and is a potentially valuable prognostic marker in PAH.
Assuntos
Biomarcadores/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Hipertensão Arterial Pulmonar/sangue , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Hipertensão Arterial Pulmonar/mortalidade , Análise de SobrevidaRESUMO
Rationale: Remodeling and fibrosis of the right ventricle (RV) may cause RV dysfunction and poor survival in patients with pulmonary hypertension. Objectives: To investigate the consequences of RV fibrosis modulation and the accompanying cellular changes on RV function. Methods: Expression of fibrotic markers was assessed in the RV of patients with pulmonary hypertension, the murine pulmonary artery banding, and rat monocrotaline and Sugen5416/hypoxia models. Invasive hemodynamic and echocardiographic assessment was performed on galectin-3 knockout or inhibitor-treated mice. Measurements and Main Results: Established fibrosis was characterized by marked expression of galectin-3 and an enhanced number of proliferating RV fibroblasts. Galectin-3 genetic and pharmacologic inhibition or antifibrotic treatment with pirfenidone significantly diminished RV fibrosis progression in the pulmonary artery banding model, without improving RV functional parameters. RV fibrotic regions were populated with mesenchymal cells coexpressing vimentin and PDGFRα (platelet-derived growth factor receptor-α), but generally lacked αSMA (α-smooth muscle actin) positivity. Serum levels of galectin-3 were increased in patients with idiopathic pulmonary arterial hypertension but did not correlate with cardiac function. No changes of galectin-3 expression were observed in the lungs. Conclusions: We identified extrapulmonary galectin-3 as an important mediator that drives RV fibrosis in pulmonary hypertension through the expansion of PDGFRα/vimentin-expressing cardiac fibroblasts. However, interventions effectively targeting fibrosis lack significant beneficial effects on RV function.
Assuntos
Fibrose/complicações , Fibrose/fisiopatologia , Galectina 3/imunologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Animais , Áustria , Baltimore , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Ratos , Função Ventricular Direita/efeitos dos fármacosRESUMO
BACKGROUND: Patients with systemic sclerosis (SSc)-associated pulmonary arterial hypertension (PAH) have a far worse prognosis than those with idiopathic PAH (IPAH). In the intact heart, SSc-PAH exhibits depressed rest and reserve right ventricular (RV) contractility compared with IPAH. We tested whether this disparity involves underlying differences in myofilament function. METHODS: Cardiac myocytes were isolated from RV septal endomyocardial biopsies from patients with SSc-PAH, IPAH, or SSc with exertional dyspnea but no resting PAH (SSc-d); control RV septal tissue was obtained from nondiseased donor hearts (6-7 per group). Isolated myocyte passive length-tension and developed tension-calcium relationships were determined and correlated with in vivo RV function and reserve. RV septal fibrosis was also examined. RESULTS: Myocyte passive stiffness from length-tension relations was similarly increased in IPAH and SSc-PAH compared with control, although SSc-PAH biopsies had more interstitial fibrosis. More striking disparities were found between active force-calcium relations. Compared with controls, maximal calcium-activated force (Fmax) was 28% higher in IPAH but 37% lower in SSc-PAH. Fmax in SSc-d was intermediate between control and SSc-PAH. The calcium concentration required for half-maximal force (EC50) was similar between control, IPAH, and SSc-d but lower in SSc-PAH. This disparity disappeared in myocytes incubated with the active catalytic subunit of protein kinase A. Myocyte Fmax directly correlated with in vivo RV contractility assessed by end-systolic elastance (R2 =0.46, P=0.002) and change in end-systolic elastance with exercise (R2 =0.49, P=0.008) and was inversely related with exercise-induced chamber dilation (R2 =0.63, P<0.002), which also was a marker of depressed contractile reserve. CONCLUSIONS: A primary defect in human SSc-PAH resides in depressed sarcomere function, whereas this is enhanced in IPAH. These disparities correlate with in vivo RV contractility and contractile reserve and are consistent with worse clinical outcomes in SSc-PAH. The existence of sarcomere disease before the development of resting PAH in patients with SSc-d suggests that earlier identification and intervention may prove useful.
Assuntos
Hipertensão Pulmonar Primária Familiar/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Miofibrilas/fisiologia , Escleroderma Sistêmico/complicações , Adulto , Idoso , Cálcio/metabolismo , Estudos de Casos e Controles , Exercício Físico , Feminino , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Humanos , Hipertensão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Contração Muscular , Miocárdio/metabolismo , Miocárdio/patologia , Estudos ProspectivosRESUMO
Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.
Assuntos
Caspase 3/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Mucosa Respiratória/citologia , Junções Íntimas/efeitos dos fármacos , Citoesqueleto de Actina/fisiologia , Permeabilidade Capilar/efeitos dos fármacos , Caspase 3/genética , Células Cultivadas , Impedância Elétrica , Endotélio Vascular/citologia , Humanos , Pulmão/citologia , Interferência de RNA , RNA Interferente Pequeno/genética , Trombina/farmacologiaRESUMO
BACKGROUND: Right ventricular (RV) angiogenesis has been associated with adaptive myocardial remodeling in pulmonary hypertension (PH), though molecular regulators are poorly defined. Endothelial cell VEGFR-2 is considered a "master regulator" of angiogenesis in other models, and the small molecule VEGF receptor tyrosine kinase inhibitor SU5416 is commonly used to generate PH in rodents. We hypothesized that SU5416, through direct effects on cardiac endothelial cell VEGFR-2, would attenuate RV angiogenesis in a murine model of PH. METHODS: C57 BL/6 mice were exposed to chronic hypoxia (CH-PH) to generate PH and stimulate RV angiogenesis. SU5416 (20 mg/kg) or vehicle were administered at the start of the CH exposure, and weekly thereafter. Angiogenesis was measured after one week of CH-PH using a combination of unbiased stereological measurements and flow cytometry-based quantification of myocardial endothelial cell proliferation. In complementary experiments, primary cardiac endothelial cells from C57 BL/6 mice were exposed to recombinant VEGF (50 ng/mL) or grown on Matrigel in the presence of SU5416 (5 µM) or vehicle. RESULT: SU5416 directly inhibited VEGF-mediated ERK phosphorylation, cell proliferation, and Kdr transcription, but not Matrigel tube formation in primary murine cardiac endothelial cells in vitro. SU5416 did not inhibit CH-PH induced RV angiogenesis, endothelial cell proliferation, or RV hypertrophy in vivo, despite significantly altering the expression profile of genes involved in angiogenesis. CONCLUSIONS: These findings demonstrate that SU5416 directly inhibited VEGF-induced proliferation of murine cardiac endothelial cells but does not attenuate CH-PH induced RV angiogenesis or myocardial remodeling in vivo.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Indóis/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Pirróis/uso terapêutico , Inibidores da Angiogênese/farmacologia , Animais , Doença Crônica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Pirróis/farmacologiaRESUMO
BACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.
Assuntos
Pesquisa , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologia , Animais , Humanos , Sociedades Médicas , Estados UnidosRESUMO
BACKGROUND: Right ventricular (RV) functional reserve affects functional capacity and prognosis in patients with pulmonary arterial hypertension (PAH). PAH associated with systemic sclerosis (SSc-PAH) has a substantially worse prognosis than idiopathic PAH (IPAH), even though many measures of resting RV function and pulmonary vascular load are similar. We therefore tested the hypothesis that RV functional reserve is depressed in SSc-PAH patients. METHODS AND RESULTS: RV pressure-volume relations were prospectively measured in IPAH (n=9) and SSc-PAH (n=15) patients at rest and during incremental atrial pacing or supine bicycle ergometry. Systolic and lusitropic function increased at faster heart rates in IPAH patients, but were markedly blunted in SSc-PAH. The recirculation fraction, which indexes intracellular calcium recycling, was also depressed in SSc-PAH (0.32±0.05 versus 0.50±0.05; P=0.039). At matched exercise (25 W), SSc-PAH patients did not augment contractility (end-systolic elastance) whereas IPAH did (P<0.001). RV afterload assessed by effective arterial elastance rose similarly in both groups; thus, ventricular-vascular coupling declined in SSc-PAH. Both end-systolic and end-diastolic RV volumes increased in SSc-PAH patients to offset contractile deficits, whereas chamber dilation was absent in IPAH (+37±10% versus +1±8%, P=0.004, and +19±4% versus -1±6%, P<0.001, respectively). Exercise-associated RV dilation also strongly correlated with resting ventricular-vascular coupling in a larger cohort. CONCLUSIONS: RV contractile reserve is depressed in SSc-PAH versus IPAH subjects, associated with reduced calcium recycling. During exercise, this results in ventricular-pulmonary vascular uncoupling and acute RV dilation. RV dilation during exercise can predict adverse ventricular-vascular coupling in PAH patients.
Assuntos
Hipertensão Pulmonar Primária Familiar/fisiopatologia , Coração/fisiopatologia , Estudos de Coortes , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Prognóstico , Estudos Prospectivos , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologiaRESUMO
OBJECTIVES: Pulmonary vascular dysfunction is associated with adverse prognosis in patients with the acute respiratory distress syndrome; however, the prognostic impact of pulmonary arterial compliance in acute respiratory distress syndrome is not established. DESIGN, SETTING, PATIENTS: We performed a retrospective analysis of 363 subjects with acute respiratory distress syndrome who had complete baseline right heart catheterization data from the Fluid and Catheter Treatment Trial to test whether pulmonary arterial compliance at baseline and over the course of treatment predicted mortality. MAIN RESULTS: Baseline pulmonary arterial compliance (hazard ratio, 1.18 per interquartile range of 1/pulmonary arterial compliance; 95% CI, 1.02-1.37; p = 0.03) and pulmonary vascular resistance (hazard ratio, 1.28 per interquartile range; 95% CI, 1.07-1.53; p = 0.006) both modestly predicted 60-day mortality. Baseline pulmonary arterial compliance remained predictive of mortality when pulmonary vascular resistance was in the normal range (p = 0.02). Between day 0 and day 3, pulmonary arterial compliance increased in acute respiratory distress syndrome survivors and remained unchanged in nonsurvivors, whereas pulmonary vascular resistance did not change in either group. The resistance-compliance product (resistance-compliance time) increased in survivors compared with nonsurvivors, suggesting improvements in right ventricular load. CONCLUSIONS: Baseline measures of pulmonary arterial compliance and pulmonary vascular resistance predict mortality in acute respiratory distress syndrome, and pulmonary arterial compliance remains predictive even when pulmonary vascular resistance is normal. Pulmonary arterial compliance and right ventricular load improve over time in acute respiratory distress syndrome survivors. Future studies should assess the impact of right ventricular protective acute respiratory distress syndrome treatment on right ventricular afterload and outcome.