RESUMO
Population-representative estimates of SARS-CoV-2 infection prevalence and antibody levels in specific geographic areas at different time points are needed to optimise policy responses. However, even population-wide surveys are potentially impacted by biases arising from differences in participation rates across key groups. Here, we used spatio-temporal regression and post-stratification models to UK's national COVID-19 Infection Survey (CIS) to obtain representative estimates of PCR positivity (6,496,052 tests) and antibody prevalence (1,941,333 tests) for different regions, ages and ethnicities (7-December-2020 to 4-May-2022). Not accounting for vaccination status through post-stratification led to small underestimation of PCR positivity, but more substantial overestimations of antibody levels in the population (up to 21 percentage points), particularly in groups with low vaccine uptake in the general population. There was marked variation in the relative contribution of different areas and age-groups to each wave. Future analyses of infectious disease surveys should take into account major drivers of outcomes of interest that may also influence participation, with vaccination being an important factor to consider.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Reino Unido/epidemiologia , Adulto , Pessoa de Meia-Idade , Idoso , Adolescente , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Adulto Jovem , Criança , Masculino , Feminino , Prevalência , Pré-Escolar , Análise Espaço-Temporal , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Lactente , Vacinação/estatística & dados numéricos , Idoso de 80 Anos ou maisRESUMO
Severe psychological trauma triggers genetic, biochemical and morphological changes in amygdala neurons, which underpin the development of stress-induced behavioural abnormalities, such as high levels of anxiety. miRNAs are small, non-coding RNA fragments that orchestrate complex neuronal responses by simultaneous transcriptional/translational repression of multiple target genes. Here we show that miR-483-5p in the amygdala of male mice counterbalances the structural, functional and behavioural consequences of stress to promote a reduction in anxiety-like behaviour. Upon stress, miR-483-5p is upregulated in the synaptic compartment of amygdala neurons and directly represses three stress-associated genes: Pgap2, Gpx3 and Macf1. Upregulation of miR-483-5p leads to selective contraction of distal parts of the dendritic arbour and conversion of immature filopodia into mature, mushroom-like dendritic spines. Consistent with its role in reducing the stress response, upregulation of miR-483-5p in the basolateral amygdala produces a reduction in anxiety-like behaviour. Stress-induced neuromorphological and behavioural effects of miR-483-5p can be recapitulated by shRNA mediated suppression of Pgap2 and prevented by simultaneous overexpression of miR-483-5p-resistant Pgap2. Our results demonstrate that miR-483-5p is sufficient to confer a reduction in anxiety-like behaviour and point to miR-483-5p-mediated repression of Pgap2 as a critical cellular event offsetting the functional and behavioural consequences of psychological stress.
Assuntos
Complexo Nuclear Basolateral da Amígdala , MicroRNAs , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Sinapses/metabolismoRESUMO
Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.
Assuntos
Infecções Irruptivas , COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Reinfecção , Reino Unido/epidemiologia , VacinaçãoRESUMO
Many of the characteristics associated with mammalian sleep are also observed in Drosophila melanogaster Meigen, making the fruit fly a powerful model organism for studying the genetics of this important process. Included among the similarities is the presence of sexual dimorphic sleep patterns, which, in flies, are manifested as increased mid-day sleep ('siesta') in males compared with females. In the present study, targeted mis-expression of the genes transformer (tra) and tra2 is used to either feminize or masculinize specific neural and non-neural tissues in the fly. Feminization of male D. melanogaster using three different GAL4 drivers that are expressed in the mushroom bodies induces a female-like reduced siesta, whereas the masculinization of females using these drivers triggers the male-like increased siesta. A similar reversal of sex-specific sleep is also observed by mis-expressing tra in the fat body, which is a key tissue in energy metabolism and hormone secretion. In addition, the daily expression levels of takeout, an important circadian clock output gene, are sexually dimorphic. Taken together, these experiments suggest that sleep sexual dimorphism in D. melanogaster is driven by multiple neural and non-neural circuits, within and outside the brain.