Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(7): 1657-1671, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830989

RESUMO

Sustainable water recovery and reuse are critical yet challenging, especially from industrial effluents in cold regions. This work presents a robust numerical model of the transport phenomena in a hybrid two-step forward osmosis (FO)-directional freeze crystallization (DFC) desalination process, whose application in areas with cold climates is advantageous. Deionized (DI) water and a hydrometallurgical effluent were considered as the feed solution in the FO step, while three aqueous solutions of inorganic salts were considered as the draw solutions (DS): NaCl, CaCl2, and MgCl2. The effects of temperature and initial DS concentration were investigated on water flux, reverse solute flux, and specific water flux using computational fluid dynamics (CFD). Based on the simulation results, the highest water flux (18 L/m2/h for DI water and 5 L/m2/h for the hydrometallurgical effluent) and lowest reverse solute flux (consistently below 0.3 mol/m2/h) were obtained when MgCl2 was used as the DS. The effect of solute type in the DS on both water recovery yield and purity was in turn studied in the subsequent DFC step, allowing to visualize the solute distribution during the freezing process.


Assuntos
Purificação da Água , Água , Congelamento , Cristalização , Purificação da Água/métodos , Membranas Artificiais , Osmose , Soluções
2.
Opt Express ; 27(16): 22960-22969, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510580

RESUMO

In this work we demonstrate the generation of two intense, ultrafast laser pulses that allow a controlled interferometric measurement of higher harmonic generation pulses with 12.8 attoseconds in resolution (half the atomic unit of time) and a precision as low as 680 zeptoseconds (10-21 seconds). We create two replicas of a driving femtosecond pulse which share the same optical path except at the focus where they converge to two foci. An attosecond pulse train emerges from each focus through the process of high harmonic generation. The two attosecond pulse trains from each focus interfere in the far field producing a clear interference pattern in the extreme ultraviolet region. By controlling the relative optical phase (carrier envelope phase for pulsed fields) between the two driving laser pulses we are able to actively influence the delay between the pulses and are able to perform very stable and precise pump-probe experiments. Because of the phase shaping operation occurs homogeneously across the entire spatial profile, we effectively create two indistinguishable intense laser pulses or a common path interferometer for attosecond pulses. Commonality across the two beams means that they are extremely stable to environmental and mechanical fluctuations up to a Rayleigh range from the focus. In our opinion this represents an ideal source for homodyne and heterodyne spectroscopic measurements with sub-attosecond precision.

3.
RSC Adv ; 13(22): 14887-14898, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37200707

RESUMO

This work presents the first validated method to analyze metals dissolved in deep eutectic solvents (DES) on a microwave plasma atomic emission spectrometer (MP-AES), which is key to the success of the upcoming field of solvometallurgical processing. The method was developed and validated for eleven metals: alkali metals: lithium (Li); alkaline earth metals: magnesium (Mg); transition metals: iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd); and post-transition metals: aluminum (Al), tin (Sn), and lead (Pb) in choline chloride based DES. The proposed method was validated with respect to linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, and selectivity. Our method's selectivity was evaluated for three DES matrices: (1) choline chloride: ethylene glycol, (2) choline chloride: levulinic acid, and (3) choline chloride: ethylene glycol in the presence of iodine, which is an oxidant often used in solvometallurgy. In all three matrices, the linearity range was plotted with at least 5 levels of standard solutions. All the parameters satisfied the acceptability criteria suggested by international organizations, such as the International Council for Harmonization, AOAC International, and the International Union of Pure and Applied Chemistry. Specifically, the calculated LOD and LOQ are comparable with aqueous matrices on MP-AES and with other analytical methods. The metal with the lowest reported LOD (0.003 ppm) and LOQ (0.008 ppm) was Cu, while the highest LOD and LOQ were obtained for Mg at 0.07 and 0.22 ppm, respectively. The recovery and precision for the three DES matrices were acceptable, i.e., between 95.67-108.40% and less than 10%, respectively. Finally, to compare the proposed method with the standard analytical method used to measure metals dissolved in aqueous solutions, we used 2 ppm standard solutions in DES and found that the accuracy was unacceptable without using the proposed method. Therefore, it is evident that our method will be pivotal in the field of solvometallurgy, as it will allow accurate and precise detection and quantification of metals dissolved in DES and eliminate quantification errors, which were estimated in excess of 140% without using the method developed and proper DES matrix-matched calibrations.

4.
Sci Rep ; 13(1): 16716, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794127

RESUMO

The colloidal stability of air nanobubbles (NBs) was studied at different temperatures (0-30 °C) and in the presence of sulfates, typically found in mining effluents, in a wide range of Na2SO4 concentrations (0.001 to 1 M), along with the effect of surfactants (sodium dodecyl sulfate), chloride salts (NaCl), and acid/base reagents at a pH range from 4 to 9. Using a nanobubble generator based on hydrodynamic cavitation, 1.2 × 108 bubbles/mL with a typical radius of 84.66 ± 7.88 nm were generated in deionized water. Multiple evidence is provided to prove their presence in suspension, including the Tyndall effect, dynamic light scattering, and nanoparticle size analysis. Zeta potential measurements revealed that NBs are negatively charged even after two months (from - 19.48 ± 1.89 to - 10.13 ± 1.71 mV), suggesting that their stability is due to the negative charge on their surface. NBs were found to be more stable in alkaline solutions compared to acidic ones. Further, low amounts of both chloride and sulfate dissolved salts led to a reduction of the size of NBs. However, when high amounts of dissolved salts are present, NBs are more likely to coalesce, and their size to be increased. Finally, the investigation of the stability of air NBs at low temperatures revealed a non-monotonic relationship between temperature and NBs upon considering water self-ionization and ion mobility. This research aims to open a new frontier towards the application of the highly innovative NBs technology on the treatment of mining, mineral, and metal processing effluents, which are challenging aqueous solutions containing chloride and sulfate species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa