Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(43): e202307446, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37593892

RESUMO

The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6 (OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈-1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from -0.9 V to <-1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures.

2.
Chem Rev ; 120(14): 6358-6466, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31939297

RESUMO

Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.

3.
Angew Chem Int Ed Engl ; 60(10): 5114-5120, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300173

RESUMO

Extremely high capacity hard carbon for Na-ion battery, delivering 478 mAh g-1 , is successfully synthesized by heating a freeze-dried mixture of magnesium gluconate and glucose by a MgO-template technique. Influences of synthetic conditions and nano-structures on electrochemical Na storage properties in the hard carbon are systematically studied to maximize the reversible capacity. Nano-sized MgO particles are formed in a carbon matrix prepared by pre-treatment of the mixture at 600 °C. Through acid leaching of MgO and carbonization at 1500 °C, resultant hard carbon demonstrates an extraordinarily large reversible capacity of 478 mAh g-1 with a high Coulombic efficiency of 88 % at the first cycle.

4.
Small ; 16(50): e2006483, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230940

RESUMO

Although O3-NaFe1/2 Mn1/2 O2 delivers a large capacity of over 150 mAh g-1 in an aprotic Na cell, its moist-air stability and cycle stability are unsatisfactory for practical use. Slightly Na-deficient O3-Na5/6 Fe1/2 Mn1/2 O2 (O3-Na5/6 FeMn) and O3-Na5/6 Fe1/3 Mn1/2 Me1/6 O2 (Me = Mg or Cu, O3-FeMnMe) are newly synthesized. The Cu and Mg doping provides higher moist-air stability. O3-Na5/6 FeMn, O3-FeMnCu, and O3-FeMnMg deliver first discharge capacities of 193, 176, and 196 mAh g-1 , respectively. Despite partial replacement of Fe with redox inactive Mg, oxide ions in O3-FeMnMg participate in the redox reaction more apparently than O3-Na5/6 FeMn. X-ray diffraction studies unveil the formation of a P-O intergrowth phase during charging up to >4.0 V.

5.
Inorg Chem ; 59(11): 7408-7414, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431149

RESUMO

Na-ion batteries are emerging alternatives to Li-ion chemistries for large-scale energy storage applications. Quaternary layered oxide Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2 offers outstanding electrochemical performance in Na-ion batteries compared to pure-phase layered oxides because of the synergistic effect of the P/O-phase mixing. The material is indeed constituted by a mixture of P3, P2, and O3 phases, and a newly identified Na-free phase, i.e., nickel magnesium oxide phase, which improves heat removal and enhances the electrochemical performance. Herein, we structurally investigate, through synchrotron-radiation X-ray diffraction, the modifications occurring after full desodiation, detailing the material structural rearrangement upon Na removal and revealing the effect of two different charging protocols, i.e., constant current (CC) and constant current-constant voltage (CCCV). While the Na-free phase is electrochemically inactive, likely helping in homogenization of the thermal gradient in the electrode during cycling, O-P intergrown phases appear during the extraction of Na ions from interslab layers, and they are dependent on the desodiation level. The application of a constant voltage step at the end of the galvanostatic charge is responsible for a shortening of the interslab distance and a significant volume contraction (-11.9%).

6.
Chem Rec ; 19(4): 735-745, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30378257

RESUMO

Lithium-ion batteries have the highest energy density among practical secondary batteries and are widely used for electronic devices, electric vehicles, and even stationary energy-storage systems. Along with the expansion of demand and applications, the concern about resources of lithium and cobalt is growing. Therefore, secondary batteries composed of abundant elements are required to complement lithium-ion batteries. In recent years, the development of potassium-ion batteries has attracted much attention, especially for large-scale energy storage. In order to realize potassium-ion batteries, various compounds are proposed and investigated as positive electrode materials, including layered transition-metal oxides, Prussian blue analogues, and polyanionic compounds. This article offers a review of polyanionic compounds which are typically composed of abundant elements and expected high operating potential. Furthermore, we deliver our new results to partially compensate for lack of studies and provide a future perspective.

7.
Chem Rec ; 18(4): 459-479, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29442429

RESUMO

Li-ion battery commercialized by Sony in 1991 has the highest energy-density among practical rechargeable batteries and is widely used in electronic devices, electric vehicles, and stationary energy storage system in the world. Moreover, the battery market is rapidly growing in the world and further fast-growing is expected. With expansion of the demand and applications, price of lithium and cobalt resources is increasing. We are, therefore, motivated to study Na- and K-ion batteries for stationary energy storage system because of much abundant Na and K resources and the wide distribution in the world. In this account, we review developments of Na- and K-ion batteries with mainly introducing our previous and present researches in comparison to that of Li-ion battery.

8.
Proc Natl Acad Sci U S A ; 112(25): 7650-5, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056288

RESUMO

Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn(4+), Ru(4+), etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co(3+), Ni(3+), etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh ⋅ g(-1) of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions.

9.
Analyst ; 142(20): 3857-3866, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28901351

RESUMO

All-solid-state ion-selective electrodes as potentiometric ion sensors for lithium, sodium, and potassium have been demonstrated by installing a composite layer containing a powder of alkali insertion materials, LixFePO4, Na0.33MnO2, and KxMnO2·nH2O, respectively, as an inner solid-contact layer between the electrode substrate and plasticized poly(vinyl chloride) (PVC)-based ion-sensitive membrane containing the corresponding ionophores for Li+, Na+, and K+ ions. These double-layer ion-selective electrodes, consisting of the composite and PVC layers prepared by a simple drop cast method, exhibit a quick potential response (less than 5 s) to each alkali-metal ion with sufficient Nernstian slopes of calibration curves, ca. 59 mV per decade. The installation of the insertion materials as the inner solid-contact layers is highly efficient for the stabilization of membrane potential, resulting in a prompt response to the alkali ion activity in the analyte, compared to those of the electrodes without the alkali insertion materials. From alternating current impedance measurements for the electrodes, the inner layer of the installed alkali insertion materials drastically reduces the impedance of the membrane/electrode interface, leading to an improvement in their ion-sensing performance.

10.
Phys Chem Chem Phys ; 18(41): 28556-28563, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27711563

RESUMO

Layered Li2MoO3 is a potential candidate for a high-capacity positive electrode material for Li-ion batteries because of its excess lithium composition. However, the difficulty of single-phase preparation and its insulating nature are drawbacks for its application in lithium-ion batteries. A small quantity of acetylene black added in the starting material solves these drawbacks, i.e. the formation of impurity phases and the low conductivity. As a result, a Li2MoO3/C composite is successfully synthesized with the simple addition of acetylene black. Since the electronic conductivity of the composite is enhanced to more than 1000 times higher than that of bare Li2MoO3, the Li2MoO3/C composite delivers approximately 230 mA h g-1 of initial discharge capacity in a voltage range of 1.5-4.3 V, while carbon-free Li2MoO3 shows only 110 mA h g-1 of initial discharge capacity. During the initial lithium extraction and insertion, a partial transformation from a layered into a cation-disordered cubic structure is evidenced in the Li2MoO3/C composite electrode by X-ray diffraction.

11.
Angew Chem Int Ed Engl ; 55(41): 12760-3, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27630078

RESUMO

To realize a reversible solid-state Mn(III/IV) redox couple in layered oxides, co-operative Jahn-Teller distortion (CJTD) of six-coordinate Mn(III) (t2g (3) -eg (1) ) is a key factor in terms of structural and physical properties. We develop a single-phase synthesis route for two polymorphs, namely distorted and undistorted P2-type Na2/3 MnO2 having different Mn stoichiometry, and investigate how the structural and stoichiometric difference influences electrochemical reaction. The distorted Na2/3 MnO2 delivers 216 mAh g(-1) as a 3 V class positive electrode, reaching 590 Wh (kg oxide)(-1) with excellent cycle stability in a non-aqueous Na cell and demonstrates better electrochemical behavior compared to undistorted Na2/3 MnO2 . Furthermore, reversible phase transitions correlated with CJTD are found upon (de)sodiation for distorted Na2/3 MnO2 , providing a new insight into utilization of the Mn(III/IV) redox couple for positive electrodes of Na-ion batteries.

12.
Phys Chem Chem Phys ; 17(5): 3783-95, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25559330

RESUMO

Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

13.
Chemphyschem ; 15(10): 2145-51, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24826925

RESUMO

A carbon-felt-based multi-enzyme immobilized bioanode for biofuel cells has been successfully developed. The combination of four enzymes, namely, invertase, mutarotase, glucose oxidase, and fructose dehydrogenase, makes it possible to use sucrose--a disaccharide--as fuel for the bioanode. The new electrode exhibits a high oxidation current density of about 12 mA cm(-2) (0.25 V vs. Ag/AgCl) in a McIlvaine buffer solution containing sucrose at pH 6.0 in the half-cell configuration. A sucrose/O(2) biofuel cell composed of the bioanode and an opposite biocathode, including bilirubin oxidase as the enzymatic electrocatalyst, was fabricated, and the new device demonstrated a maximum power density of 2.90 mW cm(-2) with an open-circuit voltage of 0.69 V in the McIlvaine buffer solution. The biofuel cell fabricated using our multi-enzyme anode operates in commercially available beverages that contain only sugar, even without glucose.


Assuntos
Carbono/química , Enzimas Imobilizadas/química , Sacarose/química , Fontes de Energia Bioelétrica , Carboidratos Epimerases/química , Eletrodos , Frutose/química , Glucose/química , Glucose Oxidase/química , Nanotubos de Carbono/química , Oxirredução , Oxirredutases/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxigênio/química , beta-Frutofuranosidase/química
14.
Phys Chem Chem Phys ; 16(29): 15007-28, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24894102

RESUMO

Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

15.
Sci Technol Adv Mater ; 15(4): 043501, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877694

RESUMO

Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

16.
ACS Appl Mater Interfaces ; 16(26): 33379-33387, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885040

RESUMO

Electrode/electrolyte interfacial ion transfer is a fundamental process occurring during insertion-type redox reactions at battery electrodes. The rate at which ions move into and out of the electrode, as well as at interphase structures, directly impacts the power performance of the battery. However, measuring and quantifying these ion transfer phenomena can be difficult, especially at high electrolyte concentrations as found in batteries. Herein, we report a scanning electrochemical microscope method using a common ferri/ferrocyanide (FeCN) redox mediator dissolved in an aqueous electrolyte to track changes in alkali ions at high electrolyte concentrations (up to 3 mol dm-3). Using voltammetry at a platinum microelectrode, we observed a reversible E1/2 shift of ∼60 mV per decade change in K+ concentrations. The response showed high stability in sequential measurements and similar behavior in other aqueous electrolytes. From there, we used the same FeCN mediator to position the microelectrode at the surface of a potassium-insertion electrode. We demonstrate tracking of local changes in the K+ concentration during insertion and deinsertion processes. Using a 2D axisymmetric, finite element model, we further estimate the effective insertion rates. These developments enable characterization of a key parameter for improving batteries, the interfacial ion transfer kinetics, and future work may show mediators appropriate for molar concentrations in nonaqueous electrolytes and beyond.

17.
Chem Sci ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39479166

RESUMO

With rising interest in new electrodes for next-generation batteries, carbon materials remain as top competitors with their reliable performance, low-cost, low voltage reactions, and diverse tunability. Depending on carbon's structure, it can attain high cyclability as with Li+ at crystalline graphite or exceptional capacities with Na+ at amorphous, porous hard carbons. In this review, we discuss key results and research directions using carbon electrodes for alkali ion storage. We start the first section with hard carbon (HC), a leading material of interest for next-generation Na-ion batteries. Methods for tuning the HC structure towards a high capacity pore-filling mechanism are examined. The rate performance of hard carbon electrodes is further discussed. We finish this section with soft carbons that mostly remain as low performing materials compared to other carbons. In the second section, we discuss alkali ion insertion into graphite and graphite-like materials. Though graphite has a long history with Li-ion batteries, it also shows promising characteristics for K-ion batteries. We discuss the significant progress made on improving the electrolyte for high cyclability of graphite with K+. Thereafter, we evaluate B/C/N materials that have a similar structure to graphite but can attain higher capacities for both Li+ and Na+. Finally, we touch on the recent developments using alternative solvents for Na+ cointercalation at graphite and deeper knowledge on the intercalant structure. Despite steady progress, carbon electrodes continue to improve as a key group of materials for alkali energy storage.

18.
Nat Mater ; 11(6): 512-7, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22543301

RESUMO

Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials, such as LiMn(2)O(4) and LiFePO(4), are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth's crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g(-1). Herein, we report a new electrode material, P2-Na(2/3)[Fe(1/2)Mn(1/2)]O(2), that delivers 190 mAh g(-1) of reversible capacity in the sodium cells with the electrochemically active Fe(3+)/Fe(4+) redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.

19.
Inorg Chem ; 52(15): 9131-42, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863088

RESUMO

O4-type LiCoO2 as a third polymorph of LiCoO2 is prepared by an ion-exchange method in aqueous media from OP4-[Li, Na]CoO2, which has an intergrowth structure of O3-LiCoO2 and P2-Na0.7CoO2. O4-type LiCoO2 is characterized by synchrotron X-ray diffraction, neutron diffraction, and X-ray absorption spectroscopy. Structural characterization reveals that O4-type LiCoO2 has an intergrowth structure of O3- and O2-LiCoO2 with stacking faulted domains. Three LiCoO2 polymorphs are formed from the close-packed CoO2 layers, which consist of edge-shared CoO6 octahedra, whereas the oxide-ion stacking is different: cubic in the O3-phase, cubic/hexagonal in the O2-phase, and alternate O3 and O2 in the O4-phase. Structural analysis using the DIFFaX program suggests that the O4-phase consists of approximately 30% of O12-domains, while stacking faults are not evidenced for O2-phase. The results suggest that a nucleation process for Na/Li ion-exchange kinetically dominates a growth process of ideal O4-domains because the presence of CoO2-Li-CoO2 blocks as O3-domains could be expected to prevent through-plane interaction of Na layers. Electrochemical behavior and structural transition processes for three LiCoO2 polymorphs are compared in Li cells. A new phase, OT(#)4-type Li0.5CoO2, is first isolated as an intergrowth phase of O3- and T(#)2-Li0.5CoO2. However, some deviations from ideal behavior as the O2/O3-intergrowth phase are also noted, presumably because of the existence of stacking faults.

20.
Adv Mater ; 35(26): e2300714, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058281

RESUMO

High-entropy layered oxide materials containing various metals that exhibit smooth voltage curves and excellent electrochemical performances have attracted attention in the development of positive electrode materials for sodium-ion batteries. However, a smooth voltage curve can be obtained by suppression of the Na+ -vacancy ordering, and therefore, transition metal slabs do not need to be more multi-element than necessary. Here, the Na+ -vacancy ordering is found to be disturbed by dual substitution of TiIV for MnIV and ZnII for NiII in P2-Na2/3 [Ni1/3 Mn2/3 ]O2 . Dual-substituted Na2/3 [Ni1/4 Mn1/2 Ti1/6 Zn1/12 ]O2 demonstrates almost non-step voltage curves with a reversible capacity of 114 mAh g-1 and less structural changes with a high crystalline structure maintained during charging and discharging. Synchrotron X-ray, neutron, and electron diffraction measurements reveal that dual-substitution with TiIV and ZnII uniquely promotes in-plane NiII -MnIV ordering, which is quite different from the disordered mixing in conventional multiple metal substitution.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa