Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 9(11): e1003897, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244179

RESUMO

Molecular mechanisms for the establishment of transcriptional memory are poorly understood. 5,6-dichloro-1-D-ribofuranosyl-benzimidazole (DRB) is a P-TEFb kinase inhibitor that artificially induces the poised RNA polymerase II (RNAPII), thereby manifesting intermediate steps for the establishment of transcriptional activation. Here, using genetics and DRB, we show that mammalian Absent, small, or homeotic discs 1-like (Ash1l), a member of the trithorax group proteins, methylates Lys36 of histone H3 to promote the establishment of Hox gene expression by counteracting Polycomb silencing. Importantly, we found that Ash1l-dependent Lys36 di-, tri-methylation of histone H3 in a coding region and exclusion of Polycomb group proteins occur independently of transcriptional elongation in embryonic stem (ES) cells, although both were previously thought to be consequences of transcription. Genome-wide analyses of histone H3 Lys36 methylation under DRB treatment have suggested that binding of the retinoic acid receptor (RAR) to a certain genomic region promotes trimethylation in the RAR-associated gene independent of its ongoing transcription. Moreover, DRB treatment unveils a parallel response between Lys36 methylation of histone H3 and occupancy of either Tip60 or Mof in a region-dependent manner. We also found that Brg1 is another key player involved in the response. Our results uncover a novel regulatory cascade orchestrated by Ash1l with RAR and provide insights into mechanisms underlying the establishment of the transcriptional activation that counteracts Polycomb silencing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Animais , Cromatina/genética , Proteínas de Ligação a DNA/genética , Diclororribofuranosilbenzimidazol/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Inativação Gênica , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Lisina/genética , Metilação , Proteínas Nucleares/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
2.
ACS Med Chem Lett ; 14(4): 396-404, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077386

RESUMO

Deregulating fibroblast growth factor receptor (FGFR) signaling is a promising strategy for cancer therapy. Herein, we report the discovery of compound 5 (TAS-120, futibatinib), a potent and selective covalent inhibitor of FGFR1-4, starting from a unique dual inhibitor of mutant epidermal growth factor receptor and FGFR (compound 1). Compound 5 inhibited all four families of FGFRs in the single-digit nanomolar range and showed high selectivity for over 387 kinases. Binding site analysis revealed that compound 5 covalently bound to the cysteine 491 highly flexible glycine-rich loop region of the FGFR2 adenosine triphosphate pocket. Futibatinib is currently in Phase I-III trials for patients with oncogenically driven FGFR genomic aberrations. In September 2022, the U.S. Food & Drug Administration granted accelerated approval for futibatinib in the treatment of previously treated, unresectable, locally advanced, or metastatic intrahepatic cholangiocarcinoma harboring an FGFR2 gene fusion or other rearrangement.

3.
Genes Cells ; 14(3): 343-54, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19210550

RESUMO

DSIF is an evolutionarily conserved, ubiquitously expressed, heterodimeric transcription elongation factor composed of two subunits, Spt4 and Spt5. Previous biochemical studies have shown that DSIF positively and negatively regulates RNA polymerase II elongation in collaboration with other protein factors. While several data suggest that DSIF is a 'general' elongation factor, there is also evidence that DSIF exerts a tissue- and gene-specific function. Here we sought to address the question of whether physiological functions of DSIF are general or specific, by using a sophisticated knockdown approach and gene expression microarray analysis. We found that Spt5 is essential for cell growth of various human cell lines and that Spt5 knockdown causes senescence and apoptosis. However, Spt5 knockdown affects a surprisingly small number of genes. In Spt5 knockdown cells, the p53 signaling pathway is activated and mediates part of the knockdown-induced transcriptional change, but apoptotic cell death occurs in the absence of p53. Structure-function analysis of Spt5 shows that the C-terminal approximately 300 amino acid residues are not required to support cell proliferation. These results suggest that one of the functions of Spt5 is to suppress senescence and apoptosis, and that this function is exerted through its association with Spt4 and Pol II.


Assuntos
Envelhecimento , Apoptose , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Fatores de Elongação da Transcrição , Proteína Supressora de Tumor p53/metabolismo
4.
Exp Cell Res ; 315(10): 1693-705, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19245807

RESUMO

Negative Elongation Factor (NELF) is a transcription factor discovered based on its biochemical activity to suppress transcription elongation, and has since been implicated in various diseases ranging from neurological disorders to cancer. Besides its role in promoter-proximal pausing of RNA polymerase II during early stages of transcription, recently we found that it also plays important roles in the 3'-end processing of histone mRNA. Furthermore, NELF has been found to form a distinct subnuclear structure, which we named NELF bodies. These recent developments point to a wide range of potential functions for NELF, and, as most studies on NELF thus far had been carried out in vitro, here, we prepared a complete set of fusion protein constructs of NELF subunits and carried out a general cell biological study of the intracellular dynamics of NELF. Our data show that NELF subunits exhibit highly specific subcellular localizations, such as in NELF bodies or in midbodies, and some shuttle actively between the nucleus and cytoplasm. We further show that loss of NELF from cells can lead to enlarged and/or multiple nuclei. This work serves as a foundation and starting point for further cell biological investigations of NELF in the future.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Células HeLa , Humanos , Interfase , Mitose , Subunidades Proteicas/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição
5.
Anticancer Res ; 39(7): 3553-3563, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262879

RESUMO

BACKGROUND/AIM: Trabectedin is a DNA-damaging agent and has been approved for the treatment of patients with advanced soft tissue sarcoma. Schlafen 11 (SLFN11) was identified as a dominant determinant of the response to DNA-damaging agents. The aim of the study was to clarify the association between SLFN11 expression and the antitumor activity of trabectedin. MATERIALS AND METHODS: The antitumor activity of trabectedin was evaluated under different expression levels of SLFN11 regulated by RNA interference and CRISPR-Cas9 systems, and the combined antitumor activity of ataxia telangiectasia and Rad3-related protein kinase (ATR) inhibitor and trabectedin in sarcoma cell lines using in vitro a cell viability assay and in vivo xenograft models. RESULTS: SLFN11-knockdown cell lines had a lower sensitivity to trabectedin, compared to parental cells. ATR inhibitor enhanced the antitumor activity of trabectedin in SLFN11-knockdown cells and in a SLFN11-knockout xenograft model. CONCLUSION: SLFN11 expression might be a key factor in the antitumor activity of trabectedin.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Proteínas Nucleares/metabolismo , Sarcoma/metabolismo , Neoplasias de Tecidos Moles/metabolismo , Trabectedina/farmacologia , Animais , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Nucleares/genética , Sarcoma/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Trabectedina/uso terapêutico
6.
Mol Cancer Res ; 17(11): 2233-2243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467113

RESUMO

Despite the worldwide approval of three generations of EGFR tyrosine kinase inhibitors (TKI) for advanced non-small cell lung cancers with EGFR mutations, no TKI with a broad spectrum of activity against all clinically relevant mutations is currently available. In this study, we sought to evaluate a covalent mutation-specific EGFR TKI, TAS6417 (also named CLN-081), with the broadest level of activity against EGFR mutations with a prevalence of ≥1%. Lung cancer and genetically engineered cell lines, as well as murine xenograft models were used to evaluate the efficacy of TAS6417 and other approved/in-development EGFR TKIs (erlotinib, afatinib, osimertinib, and poziotinib). We demonstrate that TAS6417 is a robust inhibitor against the most common EGFR mutations (exon 19 deletions and L858R) and the most potent against cells harboring EGFR-T790M (first/second-generation TKI resistance mutation). In addition, TAS6417 has activity in cells driven by less common EGFR-G719X, L861Q, and S768I mutations. For recalcitrant EGFR exon 20 insertion mutations, selectivity indexes (wild-type EGFR/mutant EGFR ratio of inhibition) favored TAS6417 in comparison with poziotinib and osimertinib, indicating a wider therapeutic window. Taken together, we demonstrate that TAS6417 is a potent EGFR TKI with a broad spectrum of activity and a wider therapeutic window than most approved/in-development generations of EGFR inhibitors. IMPLICATIONS: TAS6417/CLN-081 is a potent EGFR TKI with a wide therapeutic window and may be effective in lung cancer patients with clinically relevant EGFR mutations.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/farmacologia , Afatinib/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Éxons/genética , Humanos , Indolizinas , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Mutação , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa