Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202402439, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278828

RESUMO

A well-judged combination of a high axial ligand field and a bridging radical ligand in a dinuclear lanthanide complex provides a single-molecule magnet with a higher effective energy barrier for magnetic relaxation and blocking temperature compared to its non-radical analog due to significant magnetic exchange coupling between radical and Ln(III) ions. In this work, we report two chloranilate (CA) bridged dinuclear dysprosium complexes, [{(bbpen)Dy(µ2-CA)Dy(bbpen)}] (1Dy) and [{(bbpen)Dy(µ2-CA•)Dy(bbpen)}-{CoCp2}+] (2Dy), where 2Dy is the radical bridged Dy-complex obtained via the chemical reduction of bridging CA moiety (H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine). The presence of high electronegative phenoxide moiety enhances the axial anisotropy of pseudo-square antiprismatic Dy(III) ions. The diffused spin of radical is efficiently coupled with anisotropic Dy(III) centres and decreases the quantum tunnelling of magnetization (QTM) in the magnetic relaxation process. The magnetic relaxation of 1Dy follows Orbach, Raman, and QTM processes whereas for 2Dy it follows Orbach and Raman Processes. Due to less involvement of the QTM relaxation process, 2Dy shows a higher thermal energy barrier (Ueff = 700 K) and a high blocking temperature (6.7 K), compared to its non-radical analog. Remarkably, the radical coupled 2Dy complex shows the highest energy barrier among the radical bridged Dy(III)-based SMMs to date.

2.
Chemistry ; : e202401334, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923656

RESUMO

Organic π-scaffolds are being envisaged for new-age electron- and ion-responsive materials that can accumulate electrons as well as transport proton. However, such systems are extremely rare as electron-deficient scaffolds are unstable in aqueous solution. Here we detail the synthesis of a water-stable core-naphthalenediimide-nitrobenzyl-viologen based tetra-cation, which accumulates up to eight-electrons within an exceptionally narrow potential window of +0.05 V and -1.12 V. The supramolecular interactions and the ensuing ionic framework are tunable based on the three anions, e.g., Cl-, Br- and PF6-, that are investigated in this work. The ionic framework is formed and supported by a range of H-bonds, in which, the nitro benzyl groups act as pillars connecting the 1D water-tapes and the halide anions. The water molecules are hydrogen-bonded with the halide anions and bestow a facile pathway for the proton conduction, with proton conductivity up to 3.19 x 10-3 S cm-1. In contrast, the ionic assembly formed by the lipophilic PF6- anions do not host the water tapes and consequently the proton conductivity is found to be four orders of magnitude lower. This is a unique example, whereby proton conductivity is realized and is tunable within a highly electron-deficient, eight-electron acceptor, water-stable ionic supramolecular system.

3.
Chemistry ; 30(34): e202400321, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38625710

RESUMO

Two novel isostructural cyanide-bridged hexadecanuclear complexes with the general formula {[Fe(CN)6]6[M{en(Bn)py}]10}2+ [M=Fe (12+), Ni (22+)] have been synthesized. The structural analyses disclose the presence of multivalent Fe centres with different spin states in complex 12+ whereas all the Fe centres share a conserved oxidation state in complex 22+. The DC magnetic study revealed antiferromagnetic interactions between the adjacent metal centres and ferrimagnetic behaviour in 12+. On the other hand, ferromagnetic interactions were observed in complex 22+ due to nearly orthogonal orientation of the interacting orbitals and poor spatial overlap as observed in BS-DFT calculations.

4.
Inorg Chem ; 63(10): 4492-4501, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38416533

RESUMO

Two heteroatom-templated Dy(III)-confined polyoxotungstates [H2N(CH3)2]7Na7[Dy2(H2O)7(W4O9)(HPSeW15O54)(α-SeW9O33)2]·31H2O (1) and [H2N(CH3)2]14K2Na18{[Dy2(H2O)13W14O40]2[α-SeW9O33]4[HPSeW15O54]2}·44H2O (2) were synthesized by a one-pot aqueous reaction and structurally characterized. The most distinctive structural feature of complexes 1 & 2 is the simultaneous presence of both trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building blocks containing P(III)-Se(IV) heteroatoms. The trimeric polyanion of 1 can be represented as a fusion of two trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units encapsulating the [Dy2(H2O)7(W4O9)]12+ cluster. On the other hand, hexameric polyoxoanions of 2 are described as four trivacant Keggin [α-SeW9O33]8- and two Dawson [HPSeW15O54]10-, building units anchoring a [Dy4(H2O)26W28O80]20+ cluster. The magnetic investigation revealed the presence of significant magnetic anisotropy and slow relaxation of magnetization behavior for complex 1 with a phenomenological energy barrier, Ueff = 13.58 K in the absence of an external magnetic field, and Ueff = 24.57 K in the presence of a 500 Oe external dc magnetic field. On the other hand, complex 2 favors the QTM relaxation process in the absence of an external magnetic field and shows field-induced slow relaxation of magnetization with Ueff = 11.11 K at 1500 Oe applied dc field. The in-depth analysis of magnetic relaxation dynamics shows that the relaxation process follows the Orbach as well as Raman relaxation pathways. Further, the ab initio calculation of the studied complexes confirms that the highly axial ground and first excited energy states (containing pure highest mJ states) are responsible for the observed single-molecule magnet (SMM) behavior. Remarkably, this is the first example of a mixed heteroatom-based Dy(III)-substituted polyoxotungstate with both trimeric Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units showing SMM behavior.

5.
Inorg Chem ; 63(34): 15752-15761, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39145691

RESUMO

Photoresponsive spin-crossover (SCO) molecules are an important class of bistable magnetic molecules with intriguing potential in device applications. The light-induced excited spin state trapping (LIESST) and the combined application of light and temperature can provide access to the metastable region of the SCO profile. The primary obstacle in utilizing light stimuli is the manifestation of light-induced trappings at extremely low temperatures. Herein, we report two novel multiresponsive 2D Hofmann-type coordination polymers exhibiting light-induced excited spin state trapping above liquid nitrogen temperature (TLIESST = 82 and 81 K). Stimulating the samples in conjugation with light and temperature successfully unveils hysteresis, which is otherwise concealed. Apart from light and temperature, we found that the SCO phenomenon is also responsive to external hydrostatic pressure and exhibits modulation of the hysteresis width and transition temperature shifts with changes in pressure.

6.
Chemistry ; 29(39): e202300060, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37102788

RESUMO

Herein, three dinuclear iron(II) helicates bearing the molecular formula [Fe2 (L1)3 ](ClO4 )4 ⋅ 2CH3 OH ⋅ 3H2 O (complex 1), [Fe2 (L2)3 ](ClO4 )4 ⋅ 6CH3 CN (complex 2), and [Fe2 (L3)3 ](ClO4 )4 ⋅ 0.5H2 O (complex 3) have been synthesized using imidazole and pyridine-imine-based ligands having fluorene moiety in the backbone. A change in the ligand field strength by terminal modulation led to a change in the spin-transition behaviour from incomplete, multi-step to complete, around room temperature in the solid state. Spin transition behaviour has also been observed in the solution phase characterized using variable temperature 1 H nuclear magnetic resonance spectroscopy (Evans method) and correlated using UV-visible spectroscopy. Fitting the NMR data using the ideal solution model yielded the transition temperature in the order T1/2 (1)

7.
Chemistry ; 29(29): e202203664, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36877587

RESUMO

Tuning the bridging fashion of anilato ligand in dinuclear DyIII complexes, reveals a sizable effect on the slow relaxation of magnetization. Combined experimental and theoretical studies divulge that the geometry with high order axial symmetry (pseudo square antiprism) reduces the transverse crystal fields corresponding to QTM (quantum tunneling of magnetization) resulting in a significant increase in energy barrier (Ueff =518 cm-1 ) through the Orbach relaxation process whereas the geometry with lower symmetry (triangular dodecahedron, pseudo D2d ) enhances the transverse crystal fields that accelerate the ground state QTM process. Notably, the value 518 cm-1 represents the highest energy barrier among anilato ligand based SMMs.

8.
Inorg Chem ; 62(9): 3886-3895, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802561

RESUMO

A missing member of well-known ternary chalcometallates, a sodium selenogallate, NaGaSe2, has been synthesized by employing a polyselenide flux and stoichiometric reaction. Crystal structure analysis using X-ray diffraction techniques reveals that it contains supertetrahedral adamantane-type Ga4Se10 secondary building units. These Ga4Se10 secondary building units are further connected via corners to form two-dimensional (2D) [GaSe2]∞- layers stacked along the c-axis of the unit cell, and the Na ions reside in the interlayer space. The compound has an unusual ability to absorb water molecules from the atmosphere or a nonanhydrous solvent to form distinct hydrated phases, NaGaSe2·xH2O (where x can be 1 and 2), with an expanded interlayer space, as verified by X-ray diffraction (XRD), thermogravimetric-differential scanning calorimetry (TG-DSC), desorption, and Fourier transform infrared spectroscopy (FT-IR) studies. The in situ thermodiffractogram indicates the emergence of an anhydrous phase before 300 °C with the decrease of interlayer spacings and reverting to the hydrated phase within a minute of re-exposure to the environment, supporting the reversibility of such a process. Structural transformation induced through water absorption results in an increase of Na ionic conductivity by 2 orders of magnitude compared to that of the pristine anhydrous phase, as verified by impedance spectroscopy. Na ions from NaGaSe2 can be exchanged in the solid-state route with other alkali and alkaline earth metals in a topotactic or nontopotactic way, leading to 2D isostructural and three-dimensional networks, respectively. Optical band gap measurements show a band gap of ∼3 eV for the hydrated phase, NaGaSe2·xH2O, which is in good agreement with the calculated band gap using a density functional theory (DFT)-based method. Sorption studies further confirm the selective absorption of water over MeOH, EtOH, and CH3CN with a maximum water uptake of 6 molecules/formula unit at a relative pressure, P/P0, of 0.9.

9.
Chem Rec ; 22(11): e202200135, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35815939

RESUMO

Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.

10.
Inorg Chem ; 61(44): 17459-17468, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36278960

RESUMO

Herein, two polyoxometalate (POM)-ligated tetranuclear rare-earth metal complexes having the molecular formula [CsxK24-x{Ln4(H2O)8(α-AsW9O33)4}]·yH2O {x = 5, y = 20, and Ln = Tb(III) (1); and x = 6, y = 28, and Ln = Dy(III) (2)} were synthesized by a one-pot reaction with LnCl3·6H2O using di-lacunary [As2W19O67(H2O)]14- precursor and characterized. The structural analysis shows that the building units [α-AsW9O33]9- are bridged by four rare-earth ions, where one [α-AsW9O33]9- bridged two Ln(III) centers asymmetrically by µ2-O and terminal oxygen atoms. The [α-AsW9O33]9- units are orthogonal to each other, resembling as vanes of a windmill. The magnetic studies disclosed the presence of large magnetic anisotropy and slow relaxation of magnetization behavior [Ueff = 15.2 K (1) and 26 K (2)] in the absence of an external magnetic field. Detailed analysis of relaxation dynamics confirmed that the QTM process in 2 (τQTM = 2.50 × 10-4 s) is slower as compared to complex 1 (τQTM = 2.38 × 10-4 s), and the relaxation process mainly follows the shortcut pathways (such as QTM, optical, and acoustic phonon process) rather than the thermally activated Orbach process. Further, the ab initio calculations show high axial ground states with minimum transverse anisotropy and provide a good agreement between calculated and experimental magnetic data for both complexes. It has also been observed that the local symmetry (D4d subgroup) around the metal centers in 1 provides higher axiality and stabilizes mJ = ±6 of Tb(III) more as compared to mJ = ±15/2 of Dy (III) in 2, resulting in higher energy splitting of the ground state in the former complex. The combined experimental and theoretical observations suggest that the high axial nature of the ground state with minimum transverse anisotropy resulting from local ligand field symmetry is responsible for the observed zero-field single-molecule magnet (SMM) behavior in the studied complexes. Notably, complex 1 is the first example of a POM-based terbium complex that shows SMM behavior in the absence of an external field.

11.
Inorg Chem ; 61(11): 4572-4580, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-34994192

RESUMO

The interplay of host-guest interactions and controlled modulation of spin-crossover (SCO) behavior is one of the most exploited topics regarding data storage, molecular sensing, and optical technologies. In this work, we demonstrate the experimental approach of tuning the SCO behavior via controlled modulation of the spin-state cooperativity in a 2D Hofmann coordination polymer, [FeIIPd(CN)4(L)2]·1.3MeOH (1·1.3MeOH; L = methyl isonicotinate). Removal of the solvent changes the four-step transition to a complete one-step spin transition with an enhanced hysteresis width (∼20 K). Structural analysis of solvated (1·1.3MeOH) and partially desolvated (1·0.3MeOH) compounds reveals that the crystal system changes from a monoclinic C2/c space group to an orthorhombic Imma space group, where the FeII sites are present in a more symmetrically equivalent environment. Consequently, the axial ligand-field (LF) strength and face-to-face interactions of the ligands were increased by removing the guest, which is reflected in the highly cooperative SCO in 1 (desolvated compound). Also, the shift of the CN bond stretching frequencies and decrease of their relative intensities from the variable-temperature Raman spectroscopic measurements further corroborate the SCO behavior. Besides, theoretical calculations reveal that the singlet (1Γ) LF terms decrease by removing guest molecules, enhancing the molecular population in the low-spin state at low temperature, as experimentally observed for 1. Notably, fine tuning of the SCO behavior via host-guests interactions provides a great opportunity to design potential chemosensors.

12.
Org Biomol Chem ; 20(14): 2818-2821, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35323831

RESUMO

Two dithienothiophene based 28π antiaromatic macrocycles with benzene and azulene units and their effects on local and global (anti)aromaticity have been described. Experimental and computational studies confirmed the presence of weak paratropic and strong diatropic ring current effects in neutral and dicationic states, respectively.


Assuntos
Benzeno , Oxirredução
13.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164395

RESUMO

Two structurally dissimilar 3d-4f cages having the formulae [(CoIII)3Gd4(µ3-OH)2(CO3) (O2CtBu)11(teaH)3]·5H2O (1) and [(CoIII)3Dy3(µ3-OH)4(O2CtBu)6(teaH)3]·(NO3)2·H2O (2) have been isolated under similar reaction conditions and stoichiometry of the reactants. The most important factor for structural diversity seems to be the incorporation of one µ3-carbonate anion in 1 and not in 2. Co atoms are in a +3 oxidation state in both complexes, as shown by the Bond Valence Sum (BVS) calculations and bond lengths, and as further supported by magnetic measurements. Co3Gd4 displays a significant magnetocaloric effect (-∆Sm = 25.67 J kg-1 K-1), and Co3Dy3 shows a single molecule magnet (SMM) behavior.

14.
Chemistry ; 27(10): 3449-3456, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33084133

RESUMO

The importance of equatorial crystal fields on magnetic anisotropy of ytterbium single molecule magnets (SMMs) is observed for the first time. Herein, we report three similar dinuclear ytterbium complexes with the formula [Yb2 (3-OMe-L)2 (DMF)2 (NO3 )2 ]⋅DMF (1), [Yb2 (3-H-L)2 (DMF)2 (NO3 )2 ]⋅DMF⋅H2 O (2), and [Yb2 (3-NO3 -L)2 (DMF)2 (NO3 )2 ] (3), [where 3-X-H2 L=N'-(2-hydroxy-3-X-benzylidene)picolinohydrazide, X=OMe (1), H (2) NO2 (3)]. Detailed magnetic measurements reveal the presence of weak antiferromagnetic interactions between the Yb centers and a field-induced slow relaxation of magnetization in all complexes. A higher energy barrier for spin reversal was observed for complex 1 (Ueff =50 K) and it decreases in the order of 2 (47 K) to 3 (40 K). Notably, complex 1 shows a remarkable energy barrier within the frequency range of 1-850 Hz reported for Yb-based SMMs. Further, ab initio calculations show a higher axial anisotropy and lower quantum tunneling of magnetization (QTM) in the ground state for 1 compared to 2 and 3. It was also observed that the presence of a strong crystal field in the equatorial plane (when the ∡ O1-Yb-O3 bond angle is close to 90°) enhances the axial anisotropy and improves the SMM behavior in the studied complexes. Both the experimental and theoretical analysis of relaxation dynamics discloses that Raman and QTM play major role on slow relaxation process for all complexes. To provide more insight into the exchange interactions, broken-symmetry DFT calculations were performed.

15.
Chemistry ; 27(19): 5858-5870, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258175

RESUMO

Design, synthesis, and applications of metal-organic frameworks (MOFs) are among the most salient fields of research in modern inorganic and materials chemistry. As the structure and physical properties of MOFs are mostly dependent on the organic linkers or ligands, the choice of ligand system is of utmost importance in the design of MOFs. One such crucial organic linker/ligand is terpyridine (tpy), which can adopt various coordination modes to generate an enormous number of metal-organic frameworks. These frameworks generally carry physicochemical characteristics induced by the π-electron-rich (basically N-electron-rich moiety) terpyridines. In this minireview, the construction of 3D MOFs associated with symmetrical terpyridines is discussed. These ligands can be easily derivatized at the lateral phenyl (4'-phenyl) position and incorporate additional organic functionalities. These functionalities lead to some different binding modes and form higher dimensional (3D) frameworks. Therefore, these 3D MOFs can carry multiple features along with the characteristics of terpyridines. Some properties of these MOFs, like photophysical, chemical selectivity, photocatalytic degradation, proton conductivity, and magnetism, etc. have also been discussed and correlated with their frameworks.

16.
Inorg Chem ; 60(16): 11948-11956, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34314144

RESUMO

We report a new class of four dimeric Co(II) complexes [Co2(bbpen)(X)2] (H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine) [X- = SCN (1), Cl (2), Br (3), and I (4)] with different coordination geometry of two Co(II) centers (trigonal-prismatic and pseudo-tetrahedral) and their magnetic study. Interestingly, the two Co(II) centers show two different types of magnetic anisotropy. State of the art ab initio CASSCF analysis reveals that the six-coordinate or the trigonal-prismatic Co(II) center possesses a consistently large negative axial zero-field splitting (negative D) parameter (∼-60 cm-1), while the four-coordinate or the pseudo-tetrahedral Co(II) center exhibits a range of D values from +13 to -23 cm-1. Ab initio calculations employing the lines model were used to estimate the magnetic exchange as both the Co(II) centers possess significant magnetic anisotropy. All the complexes display rare ferromagnetic interaction, and the strength of this interaction decreases as the ligand field on the pseudo-tetrahedral Co(II) center decreases from SCN- > Cl- > Br- > I-.

17.
Chemistry ; 26(40): 8774-8783, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32315101

RESUMO

Herein, two coordination polymers (CPs) [{Dy(Cl2 An)1.5 (CH3 OH)}⋅4.5 H2 O]n (1) and [Dy(Cl2 An)1.5 (DMF)2 ]n (2), in which Cl2 An is chloranilate (2,5-dihydroxy-1,4-benzoquinone dianion), exhibiting field-induced single-molecule magnet behavior with moderate barrier of magnetization reversal are reported. Detailed structural and topological analysis disclosed that 1 has a 3D network, whereas 2 has a 2D layered-type structure. In both CPs, magnetic measurements showed weak antiferromagnetic exchange interaction between the dysprosium centers and field-induced slow magnetic relaxation with barriers of 175(9)K and 145(7)K for 1 and 2, respectively. Notably, the energy barriers of magnetization reversal of 1 and 2 are remarkable for metal-chloranilate-based 3D (1) and 2D (2) CPs. The temperature and field dependence of relaxation time indicate the presence of multiple relaxation pathways, such as direct, quantum tunneling of magnetization, Raman, and Orbach processes, in both CPs. Ab initio theoretical calculations reinforced the experimentally observed higher energy barrier in 1 as compared with 2 due to the presence of large transverse anisotropy in the ground state in the latter. The average transition magnetic moment between the computed low-lying spin-orbit states also rationalized the relaxation as Orbach and Raman processes through the first excited state. BS-DFT calculations were carried out for both CPs to provide more insight into the exchange interaction.

18.
Chemistry ; 26(21): 4780-4789, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943399

RESUMO

A rational approach to modulating easy-axis magnetic anisotropy by varying the axial donor ligand in heptacoordinated FeII complexes has been explored. In this series of complexes with formulae of [Fe(H4 L)(NCS)2 ]⋅3 DMF⋅0.5 H2 O (1), [Fe(H4 L)(NCSe)2 ]⋅3 DMF⋅0.5 H2 O (2), and [Fe(H4 L)(NCNCN)2 ]⋅DMF⋅H2 O (3) [H4 L=2,2'-{pyridine-2,6-diylbis(ethan-1-yl-1-ylidene)}bis(N-phenylhydrazinecarboxamide)], the axial positions are successively occupied by different nitrogen-based π-donor ligands. Detailed dc and ac magnetic susceptibility measurements reveal the existence of easy-axis magnetic anisotropy for all of the complexes, with 1 [Ueff =21 K, τ0 =1.72×10-6  s] and 2 [Ueff =25 K, τ0 =2.25×10-6  s] showing field-induced slow magnetic relaxation behavior. However, both experimental studies and theoretical calculations indicate the magnitude of the D value of complex 3 to be larger than those of complexes 1 and 2 due to the axial bond angle being smaller than that for an ideal geometry. Detailed analysis of the field and temperature dependences of relaxation time for 1 and 2 has revealed that multiple relaxation processes (quantum tunneling of magnetization, direct, and Raman) are involved in slow magnetic relaxation for both of these complexes. Magnetic dilution experiments support the role of intermolecular short contacts.

19.
Inorg Chem ; 59(18): 13024-13028, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32865405

RESUMO

The new 3D Hofmann-type coordination polymer [Fe(dpyu){Pt(CN)4}]·9H2O [dpyu = 1,3-di(pyridin-4-yl)urea] exhibits reversible interchange between two- and one-step spin-crossover behavior, associated with desorption/resorption of lattice water molecules. Solvent water removal also induces an increase of the spin-transition temperature, indicating strong lattice cooperativity, observed for the first time in a 3D Hofmann-type coordination polymer.

20.
Inorg Chem ; 58(16): 10686-10693, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31379159

RESUMO

We have demonstrated the effect of a solvent at the second coordination sphere on slow relaxation of magnetization for hepta-coordinated cobalt(II) complexes with the formulas [Co(H4L)(DMF)(H2O)](NO3)2·(DMF) (1), [Co(H4L)(MeOH)(H2O)](NO3)2·(MeOH) (2), and [Co(H4L)(DEF)(H2O)](NO3)2 (3) (H4L = 2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(N-phenylhydrazinecarboxamide). Structural analysis reveals that the presence of lattice solvent molecule in 1 and 2 dramatically changes the crystal packing and noncovalent interactions as compared to 3 where no solvent molecule is present in the crystal lattice. The dc and ac magnetic susceptibility measurements reveal the presence of easy-plane magnetic anisotropy for all the complexes, and field induced slow relaxation behavior has been observed above 2 K for 1 and 2 in contrast to 3 due to the availability of the solvent molecules in the crystal lattice. The ab initio calculations further support the sign of D and the negligible effect of the first co-ordination sphere, as almost similar D values were obtained for all the complexes. The field and temperature dependence of relaxation time confirm that quantum tunnelling of magnetization (QTM) plays a major role in slow magnetic relaxation, and thermal dependence like an optical or acoustic Raman pathway is also important. To further analyze the effect of dipole-dipole interaction on slow magnetic relaxation, a dilution experiment has been performed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa