Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 858(1-2): 96-105, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17766198

RESUMO

A method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed for the simultaneous analysis of nine chlorogenic acids (CGAs), three isomers each of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs) and dicaffeoylquinic acids (dCQAs), and their two metabolites, caffeic acid (CA) and ferulic acid (FA), in human plasma. In simultaneous multiple reaction monitoring (MRM) measurements using ESI-MS/MS with a negative ion mode, a deprotonated molecular ion derived from each of the 11 molecules was used as a precursor ion while three diagnostic product ions characteristic for each were selected for the qualitative analysis. To obtain maximal intensities for all diagnostic product ions, the collision energy was optimized for each one. LC separation was achieved under conditions of a reversed-phase Inertsil ODS-2 column combined with a gradient elution system using 50mM acetic acid with 3% acetonitrile aqueous solution and 50 mM acetic acid with 100% acetonitrile. In the quantitative analysis, one of the three diagnostic product ions for each of the 11 molecules was selected. Application of simultaneous LC-ESI-MS/MS MRM measurements to analyze the 11 standards spiked into blank human plasma indicated that all diagnostic product ions were detected without any interference, and that the sensitivity, linearity and recovery of this method were acceptable. When using this method to analyze those 11 molecules in the plasma after oral ingestion of 250 ml of a drink containing a green coffee bean extract (300 mg CGAs), all 11 molecules were identified and CQAs, FQAs and FA were quantified. CQAs, FQAs and dCQAs in human plasma were detected for the first time. This method should be useful to understand the biological and pharmacological effects of CGAs, such as improvement of human hypertension.


Assuntos
Ácido Clorogênico/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Humanos , Masculino , Estrutura Molecular , Reprodutibilidade dos Testes
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 834(1-2): 26-34, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16513433

RESUMO

A method for the sensitive and specific determination of eight green tea catechins, consisting of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin-3-gallate (CG), epicatechin-3-gallate (ECG), gallocatechin-3-gallate (GCG) and epigallocatechin-3-gallate (EGCG), in human plasma was established. For optimization of conditions for LC-ESIMS, the separation of the eight catechins was achieved chromatographically using Inertsil ODS-2 column combined with a gradient elution system of 0.1M aqueous acetic acid and 0.1M acetic acid in acetonitrile. Detection using a mass spectrometer was performed with selected ion monitoring at m/z=289 for E and EC, 305 for GC and EGC, 441 for CG and ECG, and 457 for GCG and EGCG under negative ESI. A preparative procedure, consisting of the addition of perchloric acid and acetonitrile to the plasma for deproteinizing and the subsequent addition of potassium carbonate solution to remove excess acid, was developed. In six different plasma with the eight catechins spiked at two different concentrations, the average recoveries were in the range between 72.7 and 84.1%, which resulted from the matrix effect and preparative loss, with coefficients of variance being 8.2-19.8% among individuals. The levels of the catechins in prepared plasma solutions that were kept at 5 degrees C within 24h were stable, which allows us to simply analyze many prepared plasma solutions using an autosampler overnight. When using this method to analyze the eight catechins in human plasma after oral ingestion of a commercial green tea beverage, we detected all the catechins absorbed into human blood for the first time. This also suggested that extremely small amounts of the eight catechins orally ingested may be absorbed based on each absorptive property for the catechins. The method should enable pharmacokinetic studies of green tea catechins in humans.


Assuntos
Catequina/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Chá/química , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta
3.
Eur J Pharmacol ; 437(1-2): 79-84, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11864643

RESUMO

We have previously reported that (+/-)-1-(2.5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 receptor agonist, induced renal vasodilation in anesthetized dogs. The present study was designed to investigate whether DOI-induced renal vasodilation might be mediated by increased nitric oxide (NO) release/production in renal tissue. The experiments were performed in anesthetized dogs. A 23-gauge needle was inserted into the left renal artery for infusion of drug solutions. Renal blood flow was measured with an electromagnetic flowmeter. The microdialysis probes were implanted into the renal cortex to collect the dialysate for measurement of guanosine 3',5'-cyclic monophosphate (cGMP) and nitrite/nitrate (NO2/NO3) concentration. Intrarenal infusion of DOI at a rate of 5 microg/kg/min resulted in a significant increase, by 30 +/- 4%, in renal blood flow, indicating renal vasodilation. The renal interstitial concentrations of NO2/NO3 and cGMP also increased by 70 +/- 6% and 60 +/- 6%, respectively. These changes induced by DOI were completely abolished by the intrarenal pretreatment with N(w)-nitro-L-arginine methyl ester (L-NAME, a NO synthase inhibitor, 100 microg/kg/min) or sarpogrelate (100 microg/kg/min, a highly selective 5-HT2 receptor antagonist). DOI infusion increased urine volume and urinary excretion of Na+, which were also blocked by L-NAME or sarpogrelate. These results suggest that DOI caused renal vasodilation due to increased NO release/production by stimulation of 5-HT2 receptors in the kidney. The natriuretic effect of DOI might also be related to increased intrarenal NO production.


Assuntos
Indofenol/análogos & derivados , Indofenol/farmacologia , Rim/irrigação sanguínea , Óxido Nítrico/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Vasodilatação/efeitos dos fármacos , Anestesia , Animais , GMP Cíclico/metabolismo , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Hemodinâmica/efeitos dos fármacos , Rim/metabolismo , Rim/fisiologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Nitritos/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Succinatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa