Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; : 119367, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36092473

RESUMO

We present the first NO2 measurements from the Nadir Mapper of Ozone Mapping and Profiler Suite (OMPS) instrument aboard the NOAA-20 satellite. NOAA-20 OMPS was launched in November 2017, with a nadir resolution of 17 × 13 km2 similar to the Ozone Monitoring Instrument (OMI). The retrieval of NOAA-20 NO2 vertical columns were achieved through the Direct Vertical Column Fitting (DVCF) algorithm, which was uniquely designed and successfully used to retrieve NO2 from OMPS aboard Suomi National Polar-orbiting Partnership (SNPP) spacecraft, predecessor to NOAA-20. Observations from NOAA-20 reveal a 20-40% decline in regional tropospheric NO2 in January-April 2020 due to COVID-19 lockdown, consistent with the findings from other satellite observations. The NO2 retrievals are preliminarily validated against ground-based Pandora spectrometer measurements over the New York City area as well as other U.S. Pandora locations. It shows OMPS total columns tend to be lower in polluted urban regions and higher in clean areas/episodes associated with relatively small NO2 total columns, but generally the agreement is within ±2.5 × 1015 molecules/cm2. Comparisons of stratospheric NO2 columns exhibit the excellent agreement between OMPS and OMI, validating OMPS capability in capturing the stratospheric background accurately. These results demonstrate the high sensitivity of OMPS to tropospheric NO2 and highlight its potential use for extending the long-term global NO2 record.

2.
Remote Sens Environ ; 2712022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37033879

RESUMO

Wildland fire smoke contains large amounts of PM2.5 that can traverse tens to hundreds of kilometers, resulting in significant deterioration of air quality and excess mortality and morbidity in downwind regions. Estimating PM2.5 levels while considering the impact of wildfire smoke has been challenging due to the lack of ground monitoring coverage near the smoke plumes. We aim to estimate total PM2.5 concentration during the Camp Fire episode, the deadliest wildland fire in California history. Our random forest (RF) model combines calibrated low-cost sensor data (PurpleAir) with regulatory monitor measurements (Air Quality System, AQS) to bolster ground observations, Geostationary Operational Environmental Satellite-16 (GOES-16)'s high temporal resolution to achieve hourly predictions, and oversampling techniques (Synthetic Minority Oversampling Technique, SMOTE) to reduce model underestimation at high PM2.5 levels. In addition, meteorological fields at 3 km resolution from the High-Resolution Rapid Refresh model and land use variables were also included in the model. Our AQS-only model achieved an out of bag (OOB) R2 (RMSE) of 0.84 (12.00 µg/m3) and spatial and temporal cross-validation (CV) R2 (RMSE) of 0.74 (16.28 µg/m3) and 0.73 (16.58 µg/m3), respectively. Our AQS + Weighted PurpleAir Model achieved OOB R2 (RMSE) of 0.86 (9.52 µg/m3) and spatial and temporal CV R2 (RMSE) of 0.75 (14.93 µg/m3) and 0.79 (11.89 µg/m3), respectively. Our AQS + Weighted PurpleAir + SMOTE Model achieved OOB R2 (RMSE) of 0.92 (10.44 µg/m3) and spatial and temporal CV R2 (RMSE) of 0.84 (12.36 µg/m3) and 0.85 (14.88 µg/m3), respectively. Hourly predictions from our model may aid in epidemiological investigations of intense and acute exposure to PM2.5 during the Camp Fire episode.

3.
Weather Forecast ; 37(12): 2313-2329, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37588421

RESUMO

The mass concentration of fine particulate matter (PM2.5; diameters less than 2.5 µm) estimated from geostationary satellite aerosol optical depth (AOD) data can supplement the network of ground monitors with high temporal (hourly) resolution. Estimates of PM2.5 over the United States (US) were derived from NOAA's operational geostationary satellites Advanced Baseline Imager (ABI) AOD data using a geographically weighted regression with hourly and daily temporal resolution. Validation versus ground observations shows a mean bias of -21.4% and -15.3% for hourly and daily PM2.5 estimates, respectively, for concentrations ranging from 0 to 1000 µg/m3. Because satellites only observe AOD in the daytime, the relation between observed daytime PM2.5 and daily mean PM2.5 was evaluated using ground measurements; PM2.5 estimated from ABI AODs were also examined to study this relationship. The ground measurements show that daytime mean PM2.5 has good correlation (r > 0.8) with daily mean PM2.5 in most areas of the US, but with pronounced differences in the western US due to temporal variations caused by wildfire smoke; the relation between the daytime and daily PM2.5 estimated from the ABI AODs has a similar pattern. While daily or daytime estimated PM2.5 provides exposure information in the context of the PM2.5 standard (> 35 µg/m3), the hourly estimates of PM2.5 used in Nowcasting show promise for alerts and warnings of harmful air quality. The geostationary satellite based PM2.5 estimates inform the public of harmful air quality ten times more than standard ground observations (1.8 vs. 0.17 million people per hour).

4.
Geohealth ; 8(1): e2023GH000890, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38259818

RESUMO

Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 µg m-3) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM2.5 exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800-1,500) or 54% more averted PM2.5-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8-17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.

5.
Geohealth ; 8(4): e2023GH000982, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560558

RESUMO

Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM2.5). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM2.5 concentrations to the prescribed burning in the FH. To determine PM2.5 increases from local burning, we used low-cost PM2.5 sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM2.5 to increase by 3.0-5.3 µg m-3 (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM2.5 compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM2.5 estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM2.5 estimates.

6.
PNAS Nexus ; 3(1): pgad483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222466

RESUMO

The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021. Compared with 2019 business-as-usual emission scenario, COVID-19 perturbations resulted in annual decreases of 10-15% in emissions of ozone (O3) and fine particle (PM2.5) gas-phase precursors, which are about two to four times larger than long-term annual trends during 2010-2019. While significant COVID-induced reductions in transportation and industrial activities, particularly in April-June 2020, resulted in overall national decreases in air pollutants, meteorological variability across the nation led to local increases or decreases of air pollutants, and mixed air quality changes across the United States between 2019 and 2020. Over a full year (April 2020 to March 2021), COVID-induced emission reductions led to 3-4% decreases in national population-weighted annual fourth maximum of daily maximum 8-h average O3 and annual PM2.5. Assuming these emission reductions could be maintained in the future, the result would be a 4-5% decrease in premature mortality attributable to ambient air pollution, suggesting that continued efforts to mitigate gaseous pollutants from anthropogenic sources can further protect human health from air pollution in the future.

7.
Lancet Planet Health ; 7(12): e963-e975, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38056967

RESUMO

BACKGROUND: Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA. METHODS: In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface observations. We estimated the annual PM2·5-attributable and black carbon-attributable mortality burden at each 1-km2 grid using concentration-response functions collected from a national cohort study and a meta-analysis study, respectively. We investigated the spatiotemporal linear-regressed trends in PM2·5 and black carbon pollution and their associated premature deaths from 2000 to 2020, and the impact of wildfires on air quality and public health. FINDINGS: Our results showed that PM2·5 and black carbon estimates are reliable, with sample-based cross-validated coefficients of determination of 0·82 and 0·80, respectively, for daily estimates (0·97 and 0·95 for monthly estimates). Both PM2·5 and black carbon in the USA showed significantly decreasing trends overall during 2000 to 2020 (22% decrease for PM2·5 and 11% decrease for black carbon), leading to a reduction of around 4200 premature deaths per year (95% CI 2960-5050). However, since 2010, the decreasing trends of fine particles and premature deaths have reversed to increase in the western USA (55% increase in PM2·5, 86% increase in black carbon, and increase of 670 premature deaths [460-810]), while remaining mostly unchanged in the eastern USA. The western USA showed large interannual fluctuations that were attributable to the increasing incidence of wildfires. Furthermore, the black carbon-to-PM2·5 mass ratio increased annually by 2·4% across the USA, mainly due to increasing wildfire emissions in the western USA and more rapid reductions of other components in the eastern USA, suggesting a potential increase in the relative toxicity of PM2·5. 100% of populated areas in the USA have experienced at least one day of PM2·5 pollution exceeding the daily air quality guideline level of 15 µg/m3 during 2000-2020, with 99% experiencing at least 7 days and 85% experiencing at least 30 days. The recent widespread wildfires have greatly increased the daily exposure risks in the western USA, and have also impacted the midwestern USA due to the long-range transport of smoke. INTERPRETATION: Wildfires have become increasingly intensive and frequent in the western USA, resulting in a significant increase in smoke-related emissions in populated areas. This increase is likely to have contributed to a decline in air quality and an increase in attributable mortality. Reducing fire risk via effective policies besides mitigation of climate warming, such as wildfire prevention and management, forest restoration, and new revenue generation, could substantially improve air quality and public health in the coming decades. FUNDING: National Aeronautics and Space Administration (NASA) Applied Science programme, NASA MODIS maintenance programme, NASA MAIA satellite mission programme, NASA GMAO core fund, National Oceanic and Atmospheric Administration (NOAA) GEO-XO project, NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) programme, and NOAA Educational Partnership Program with Minority Serving Institutions.


Assuntos
Poluentes Atmosféricos , Aprendizado Profundo , Material Particulado , Fuligem , Incêndios Florestais , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Carbono/efeitos adversos , Carbono/análise , Estudos de Coortes , Material Particulado/efeitos adversos , Material Particulado/análise , Fuligem/efeitos adversos , Fuligem/análise , Incêndios Florestais/mortalidade , Estados Unidos/epidemiologia , Mortalidade/tendências
8.
Sci Total Environ ; 856(Pt 1): 158797, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116651

RESUMO

A near-real-time (NRT) aerosol forecast and diagnostic approach is developed based on the system of Infusing satellite Data into Environmental Applications for East Asia, herein denoted as IDEA-EA. The design incorporates a 0.5-degree Global Forecast System (GFS) and Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol and cloud retrievals for meteorological and remote sensing inputs. The primary output of IDEA-EA includes aerosol forward and backward air mass trajectory forecasts, migration visualization, and data synthesis purposed for NRT aerosol detection, monitoring, and source tracing in East Asia. Two aerosol episodes of Southeast Asia (SEA) biomass burning and Chinese haze infusion with Gobi dust are illustrated by IDEA-EA to demonstrate its forecast and source tracing capabilities. In the case of SEA biomass burning (late March 2021), forward trajectories of IDEA-EA forecasted air masses with high aerosol optical depth (AOD) from SEA affecting Taiwan. The IDEA-EA forecasts were verified by increased AOD and surface PM2.5 observations at a mountain site. In the case of the Chinese haze (October 30, 2019), backward trajectories from the northern tip of Taiwan traced air masses back to the east coast of mainland China and possibly further to the Gobi Desert. Compared with conventional numerical model simulations, the combination of the state-of-the-art aerosol remote sensing and trajectory modeling in IDEA-EA provides a cost-effective alternative for air quality management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Poeira/análise
9.
Sci Total Environ ; 839: 156130, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609700

RESUMO

Wildfire outbreaks can lead to extreme biomass burning (BB) emissions of both oxidized (e.g., nitrogen oxides; NOx = NO+NO2) and reduced form (e.g., ammonia; NH3) nitrogen (N) compounds. High N emissions are major concerns for air quality, atmospheric deposition, and consequential human and ecosystem health impacts. In this study, we use both satellite-based observations and modeling results to quantify the contribution of BB to the total emissions, and approximate the impact on total N deposition in the western U.S. Our results show that during the 2020 wildfire season of August-October, BB contributes significantly to the total emissions, with a satellite-derived fraction of NH3 to the total reactive N emissions (median ~ 40%) in the range of aircraft observations. During the peak of the western August Complex Fires in September, BB contributed to ~55% (for the contiguous U.S.) and ~ 83% (for the western U.S.) of the monthly total NOx and NH3 emissions. Overall, there is good model performance of the George Mason University-Wildfire Forecasting System (GMU-WFS) used in this work. The extreme BB emissions lead to significant contributions to the total N deposition for different ecosystems in California, with an average August - October 2020 relative increase of ~78% (from 7.1 to 12.6 kg ha-1 year-1) in deposition rate to major vegetation types (mixed forests + grasslands/shrublands/savanna) compared to the GMU-WFS simulations without BB emissions. For mixed forest types only, the average N deposition rate increases (from 6.2 to 16.9 kg ha-1 year-1) are even larger at ~173%. Such large N deposition due to extreme BB emissions are much (~6-12 times) larger than low-end critical load thresholds for major vegetation types (e.g., forests at 1.5-3 kg ha-1 year-1), and thus may result in adverse N deposition effects across larger areas of lichen communities found in California's mixed conifer forests.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ecossistema , Humanos , Nitrogênio/análise , Estados Unidos
10.
J Air Waste Manag Assoc ; 59(9): 1082-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19785275

RESUMO

Collocated Interagency Monitoring of Protected Visual Environments (IMPROVE) particulate matter (PM) less than 2.5 microm in aerodynamic diameter (PM2.5) chemically speciated data, mass of PM less than 10 microm in aerodynamic diameter (PM10), and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and size distribution at Bondville, IL, were compared with satellite-derived AOD. This was done to evaluate the quality of the Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data and their potential to predict surface PM2.5 concentrations. MODIS AOD correlated better to AERONET AOD (r = 0.835) than did GOES AOD (r = 0.523). MODIS and GOES AOD compared better to AERONET AOD when the particle size distribution was dominated by fine mode. For all three AOD methods, correlation between AOD and PM2.5 concentration was highest in autumn and lowest in winter. The AERONET AOD-PM2.5 relationship was strongest with moderate relative humidity (RH). At low RH, AOD attributable to coarse mass degrades the relationship; at high RH, added AOD from water growth appears to mask the relationship. For locations such as many in the central and western United States with substantial coarse mass, coarse mass contributions to AOD may make predictions of PM2.5 from AOD data problematic. Seasonal and diurnal variations in particle size distributions, RH, and seasonal changes in boundary layer height need to be accounted for to use satellite AOD to predict surface PM2.5.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Monitoramento Ambiental/normas , Material Particulado/análise , Umidade , Illinois , Robótica , Comunicações Via Satélite , Estações do Ano
11.
J Air Waste Manag Assoc ; 59(8): 980-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19728492

RESUMO

A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in near real time and archive the results for retrospective analyses. The main components of the system (Infusing satellite Data into Environmental Applications [IDEA], the U.S. Air Quality Weblog [Smog Blog], Smog Stories, U.S. Environmental Protection Agency's AIRQuest decision support system, and the Remote Sensing Information Gateway [RSIG]) are described, and the relationship of how data move from one system to another is outlined. To provide examples of how the results can be used to analyze specific pollution episodes, three events (two fires and one wintertime low planetary boundary layer haze) are discussed. Not all tools are useful at all times, and the limitations, including the sparsity of some data, the interference caused by overlying clouds, etc., are shown. Nevertheless, multiple sources of data help a state, local, or regional air quality analyst construct a more thorough picture of a daily air pollution situation than what one would obtain with only surface-based sensors.


Assuntos
Monitoramento Ambiental , Material Particulado/análise , Smog , California , Sistemas de Apoio a Decisões Administrativas , Incêndios , Imageamento Tridimensional , Internet , Comunicações Via Satélite , Estados Unidos
12.
J Geophys Res Atmos ; 122(5): 3005-3022, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29796366

RESUMO

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere.

13.
Environ Health Insights ; 9(Suppl 2): 9-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078588

RESUMO

Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment.

14.
Environ Sci Technol ; 42(15): 5800-6, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18754512

RESUMO

We analyze the strength of association between aerosol optical depth (AOD) retrievals from the GOES aerosol/smoke product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform, giving half-hourly observations every day, in contrast to once per day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated instrument and retrieval algorithm. We find that daily correlations between GASP AOD and PM2.5 over time at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over space at fixed times are lower. Simple averaging to the month and year actually reduces correlations over space, but statistical calibration allows averaging over time that produces moderately strong correlations. These results and the data density of GASP AOD highlight its potential to help improve exposure estimates for epidemiological analyses. On average 39% of days in a month have a GASP AOD retrieval compared to 11% for MODIS and 5% for MISR. Furthermore, GASP AOD has been retrieved since November 1994, providing a long-term record that predates the availability of most PM2.5 monitoring data and other satellite instruments.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Dispositivos Ópticos , Material Particulado/análise , Comunicações Via Satélite , Fumaça/análise , Monitoramento Ambiental/instrumentação , Tamanho da Partícula , Estações do Ano , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa