Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511295

RESUMO

During the early development of marine invertebrates, planktic larvae usually occur, and their body surfaces often form specific types of cilia that are involved in locomotion and feeding. The echiuran worm Urechis unicinctus sequentially undergoes the formation and disappearance of different types of body surface cilia during embryonic and larval development. The morphological characteristics and molecular mechanisms involved in the process remain unclear. In this study, we found that body surface cilia in U. unicinctus embryos and larvae can be distinguished into four types: body surface short cilia, apical tufts, circumoral cilia and telotrochs. Further, distribution and genesis of the body surface cilia were characterized using light microscope and electron microscope. To better understand the molecular mechanism during ciliogenesis, we revealed the embryonic and larval transcriptome profile of the key stages of ciliogenesis in U. unicinctus using RNA-Seq technology. A total of 29,158 differentially expressed genes (DEGs) were obtained from 24 cDNA libraries by RNA-Seq. KEGG pathway enrichment results showed that Notch, Wnt and Ca2+ signaling pathways were significantly enriched during the occurrence of apical tufts and circumoral cilia. Furthermore, all DEGs were classified according to their expression pattern, and DEGs with similar expression pattern were grouped into a module. All DEG co-expression modules were correlated with traits (body surface short cilia, apical tufts, circumoral cilia and telotrochs) by WGCNA, the results showed DEGs were divided into 13 modules by gene expression patterns and that the genes in No. 7, No. 8 and No. 10 modules were to be highly correlated with the occurrence of apical tufts, circumoral cilia and telotrochs. The top 10 hub genes in the above three modules were identified to be highly correlated with ciliogenesis, including the reported cilium-related gene Cnbd2 and unreported cilium-related candidate genes FAM181B, Capsl, Chst3, TMIE and Innexin. Notably, Innexin was included in the top10 hub genes of the two modules (No. 7 and No. 8), suggesting that Innexin may play an important role in U. unicinctus apical tufts, circumoral cilia and telotrochs genesis. This study revealed the characteristics of ciliogenesis on the body surface of U. unicinctus embryos and larvae, providing basic data for exploring the molecular mechanism of ciliogenesis on the body surface.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Poliquetos/genética , Perfilação da Expressão Gênica , Transcriptoma , Transdução de Sinais
2.
Proc Biol Sci ; 289(1982): 20220705, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36264643

RESUMO

In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.


Assuntos
Anelídeos , Poliquetos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Anelídeos/genética , Vertebrados/genética
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 404-416, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514220

RESUMO

The dry skin tortures numerous patients with severe itch. The transient receptor potential cation channel V member 1 (TRPV1) and A member 1 (TRPA1) are two essential receptors for peripheral neural coding of itch sensory, mediating histaminergic and nonhistaminergic itch separately. In the dorsal root ganglion, transmembrane protein 100 (TMEM100) is structurally related to both TRPV1 and TRPA1 receptors, but the exact role of TMEM100 in itch sensory coding is still unknown. Here, in this study, we find that TMEM100 + DRG neurons account for the majority of activated neurons in an acetone-ether-water (AEW)-induced dry skin itch model, and some TMEM100 + DRG neurons are colocalized with both TRPA1 and the chloroquine-related Mrgpr itch receptor family. Both the expression and function of TRPA1 channels, but not TRPV1 channels, are upregulated in the AEW model, and specific DRG Tmem100 gene knockdown alleviates AEW-induced itch and rescues the expression and functional changes of TRPA1. Our results strongly suggest that TMEM100 protein in DRG is the main facilitating factor for dry-skin-related chronic itch, and specific suppression of TMEM100 in DRG could be a novel effective treatment strategy for patients who suffer from dry skin-induced itch.


Assuntos
Prurido , Canais de Potencial de Receptor Transitório , Humanos , Gânglios Espinais/metabolismo , Proteínas de Membrana/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Regulação para Cima
4.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269857

RESUMO

The intertidal zone is a transitional area of the land-sea continuum, in which physical and chemical properties vary during the tidal cycle and highly toxic sulfides are rich in sediments due to the dynamic regimes. As a typical species thriving in this habitat, Urechis unicinctus presents strong sulfide tolerance and is expected to be a model species for sulfide stress research. Heat shock proteins (HSPs) consist of a large group of highly conserved molecular chaperones, which play important roles in stress responses. In this study, we systematically analyzed the composition and expression of HSPs in U. unicinctus. A total of eighty-six HSP genes from seven families were identified, in which two families, including sHSP and HSP70, showed moderate expansion, and this variation may be related to the benthic habitat of the intertidal zone. Furthermore, expression analysis revealed that almost all the HSP genes in U. unicinctus were significantly induced under sulfide stress, suggesting that they may be involved in sulfide stress response. Weighted gene co-expression network analysis (WGCNA) showed that 12 HSPs, including 5 sHSP and 4 HSP70 family genes, were highly correlated with the sulfide stress response which was distributed in steelblue and green modules. Our data indicate that HSPs, especially sHSP and HSP70 families, may play significant roles in response to sulfide stress in U. unicinctus. This systematic analysis provides valuable information for further understanding of the function of the HSP gene family for sulfide adaptation in U. unicinctus and contributes a better understanding of the species adaptation strategies of marine benthos in the intertidal zone.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Poliquetos/genética , Poliquetos/metabolismo , Sulfetos/metabolismo
5.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164243

RESUMO

This mini-review provides coverage of chitosan-based adsorbents and their modified forms as sustainable solid-phase extraction (SPE) materials for precious metal ions, such as gold species, and their complexes in aqueous media. Modified forms of chitosan-based adsorbents range from surface-functionalized systems to biomaterial composites that contain inorganic or other nanomaterial components. An overview of the SPE conditions such as pH, temperature, contact time, and adsorbent dosage was carried out to outline how these factors affect the efficiency of the sorption process, with an emphasis on gold species. This review provides insight into the structure-property relationships for chitinaceous adsorbents and their metal-ion removal mechanism in aqueous media. Cross-linked chitosan sorbents showed a maximum for Au(III) uptake capacity (600 mg/g), while S-containing cross-linked chitosan display favourable selectivity and uptake capacity with Au(III) species. Compared to industrial adsorbents such as activated carbon, modified chitosan sorbents display favourable uptake of Au(III) species, especially in aqueous media at low pH. In turn, this contribution is intended to catalyze further research directed at the rational design of tailored SPE materials that employ biopolymer scaffolds to yield improved uptake properties of precious metal species in aqueous systems. The controlled removal of gold and precious metal species from aqueous media is highly relevant to sustainable industrial processes and environmental remediation.

6.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 538-546, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693534

RESUMO

Peripheral inflammation is always accompanied by a noxious sensation, either pain or itch, providing a protective warning for the occurrence of pathological changes; however, the mechanisms determining whether pain, itch, or both will be elicited under certain inflammatory statuses are still far from clear. Complete Freund's adjuvant (CFA) contains heat killed and dried Mycobacterium tuberculosis widely used to induce inflammatory pain models, but how CFA treatment affects itch sensation and the possible mechanisms are still unclear. In this study, using itch behavior testing and calcium imaging, we showed that both the behaviors and calcium responses associated with Transient Receptor Potential Vanilloid 1 (TRPV1)-mediated histamine-dependent itch and Transient Receptor Potential Ankyrin 1 (TRPA1)-mediated histamine-independent itch were significantly suppressed by CFA treatment. Furthermore, to explore the possible cellular mechanisms, high-throughput single-cell RNA sequencing and real-time PCR were used to detect CFA-induced changes of itch-related genes in dorsal root ganglion (DRG) neurons. Our results revealed that although both nociceptive Trpv1+ and Trpa1+ DRG neurons were increased after CFA treatment, most known pruriceptors, including Hrh1+, Mrgpra3+, Mrgprd+, Htr3a+, Htr1f+, IL31ra+, Osmr+, and Lpar3+ DRG neurons, were significantly decreased, which may explain that CFA treatment caused itch suppression. This study indicated that itch sensation was affected after CFA treatment, although negatively, and comprehensive but not specific suppression of different pruriceptors was observed after CFA treatment, suggesting that a unified adaptive change of increased pain and decreased itch will occur simultaneously under CFA-induced inflammatory conditions.


Assuntos
Adjuvante de Freund/farmacocinética , Prurido/tratamento farmacológico , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Masculino , Camundongos , Prurido/metabolismo , Prurido/patologia
7.
Soft Matter ; 16(2): 505-522, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31804646

RESUMO

The non-specific adhesion of polymers and soft tissues is of great interest to the field of biomedical engineering, as it will shed light on some of the processes that regulate interactions between scaffolds, implants and nanoparticles with surrounding tissues after implantation or delivery. In order to promote adhesion to soft tissues, a greater understanding of the relationship between polymer chemistry and nanoscale adhesion mechanisms is required. In this work, we grew poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(acrylic acid) (PAA) and poly(oligoethylene glycol methacrylate) (POEGMA) brushes from the surface of silica beads, and investigated their adhesion to a variety of substrates via colloidal probe-based atomic force microscopy (AFM). We first characterised adhesion to a range of substrates with defined surface chemistry (self-assembled monolayers (SAMs) with a range of hydrophilicities, charge and hydrogen bonding), before studying the adhesion of brushes to epithelial cell monolayers (primary keratinocytes and HaCaT cells) and soft tissues (porcine epicardium and keratinized gingiva). Adhesion assays to SAMs reveal the complex balance of interactions (electrostatic, van der Waals interactions and hydrogen bonding) regulating the adhesion of weak polyelectrolyte brushes. This resulted in particularly strong adhesion of PAA brushes to a wide range of surface chemistries. In turn, colloidal probe microscopy on cell monolayers highlighted the importance of the glycocalyx in regulating non-specific adhesions. This was also reflected by the adhesive properties of soft tissues, in combination with their mechanical properties. Overall, this work clearly demonstrates the complex nature of interactions between polymeric biomaterials and biological samples and highlights the need for relatively elaborate models to predict these interactions.


Assuntos
Materiais Biocompatíveis/química , Gengiva/química , Queratinócitos/química , Pericárdio/química , Polieletrólitos/química , Proteínas/química , Acrilatos/química , Animais , Linhagem Celular , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Propriedades de Superfície , Suínos
8.
Acta Biochim Biophys Sin (Shanghai) ; 51(12): 1216-1222, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31735968

RESUMO

The hypothalamus-pituitary-adrenal (HPA) axis is known to mediate gut-brain interaction, and the pathological inflammatory process in the intestine can induce HPA axis involved 'fight or flight' response to suppress or facilitate intestinal inflammation. Hypothalamic paraventricular nucleus (PVN) neurons are responsible for controlling the HPA axis activity, but their exact role in modulating intestinal inflammation remains unclear. In this study, we used the dextran sulfate sodium (DSS)-induced mice colitis model, gene editing, and RNA interference to determine the effects of PVN neurons on intestinal inflammation. We found that at the early stage (third day) after DSS treatment, there was a mild inflammation in the colorectal area and an increased neuron activation in the PVN but not in the adjacent area. At the same time, ~80% of activated PVN neurons also expressed novel estrogen GPER1 receptor. The colitis noticeably worsened in GPER1-knockout mice and local PVN GPER1-knockdown mice. These results indicated that PVN GPER1 positive neurons potentially have a protective function during the early stages of DSS-induced colitis, and this may be a mechanism by which the central nervous system attempts to suppress intestinal inflammation to achieve self-protection.


Assuntos
Colite/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
9.
Nano Lett ; 18(3): 1946-1951, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29411615

RESUMO

Adherent cell culture typically requires cell spreading at the surface of solid substrates to sustain the formation of stable focal adhesions and assembly of a contractile cytoskeleton. However, a few reports have demonstrated that cell culture is possible on liquid substrates such as silicone and fluorinated oils, even displaying very low viscosities (0.77 cSt). Such behavior is surprising as low viscosity liquids are thought to relax much too fast (

Assuntos
Adesão Celular , Nanoestruturas/química , Proteínas/química , Adsorção , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Bovinos , Linhagem Celular , Proliferação de Células , Halogenação , Humanos , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Óleos/química , Soroalbumina Bovina/química , Propriedades de Superfície , Tensoativos/química , Viscosidade
10.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013695

RESUMO

The larval segment formation and secondary loss in echiurans is a special phenomenon, which is considered to be one of the important characteristics in the evolutionary relationship between the Echiura and Annelida. To better understand the molecular mechanism of this phenomenon, we revealed the larval transcriptome profile of the echiuran worm Urechis unicinctus using RNA-Seq technology. Twelve cDNA libraries of U. unicinctus larvae, late-trochophore (LT), early-segmentation larva (ES), segmentation larva (SL), and worm-shaped larva (WL) were constructed. Totally 243,381 unigenes were assembled with an average length of 1125 bp and N50 of 1836 bp, and 149,488 unigenes (61.42%) were annotated. We obtained 70,517 differentially expressed genes (DEGs) by pairwise comparison of the larval transcriptome data at different developmental stages and clustered them into 20 gene expression profiles using STEM software. Based on the typical profiles during the larval segment formation and secondary loss, eight signaling pathways were enriched, and five of which, mTOR, PI3K-AKT, TGF-ß, MAPK, and Dorso-ventral axis formation signaling pathway, were proposed for the first time to be involved in the segment formation. Furthermore, we identified 119 unigenes related to the segment formation of annelids, arthropods, and chordates, in which 101 genes were identified in Drosophila and annelids. The function of most segment polarity gene homologs (hedgehog, wingless, engrailed, etc.) was conserved in echiurans, annelids, and arthropods based on their expression profiles, while the gap and pair-rule gene homologs were not. Finally, we verified that strong positive signals of Hedgehog were indeed located on the boundary of larval segments using immunofluorescence. Data in this study provide molecular evidence for the understanding of larval segment development in echiurans and may serve as a blueprint for segmented ancestors in future research.


Assuntos
Perfilação da Expressão Gênica , Poliquetos/crescimento & desenvolvimento , Poliquetos/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Imunofluorescência , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Larva , Anotação de Sequência Molecular , Poliquetos/metabolismo
11.
Fish Shellfish Immunol ; 58: 266-273, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27633676

RESUMO

Heat shock protein 70 (Hsp70s) family members are present in virtually all living organisms and perform a fundamental role against different types of environmental stressors and pathogenic organisms. Marine bivalves live in highly dynamic environments and may accumulate paralytic shellfish toxins (PSTs), a class of well-known neurotoxins closely associated with harmful algal blooms (HABs). Here, we provide a systematic analysis of Hsp70 genes (PyHsp70s) in the genome of Yesso scallop (Patinopecten yessoensis), an important aquaculture species in China, through in silico analysis using transcriptome and genome databases. Phylogenetic analyses indicated extensive expansion of Hsp70 genes from the Hspa12 sub-family in the Yesso scallop and also the bivalve lineages, with gene duplication events before or after the split between the Yesso scallop and the Pacific oyster. In addition, we determined the expression patterns of PyHsp70s after exposure to Alexandrium catenella, the dinoflagellate producing PSTs. Our results confirmed the inducible expression patterns of PyHsp70s under PSTs stress, and the responses to the toxic stress may have arisen through the adaptive recruitment of tandem duplication of Hsp70 genes. These findings provide a thorough overview of the evolution and modification of the Hsp70 family, which will gain insights into the functional characteristics of scallop Hsp70 genes in response to different stresses.


Assuntos
Dinoflagellida/química , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Toxinas Marinhas/toxicidade , Pectinidae/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Imunidade Inata , Pectinidae/classificação , Pectinidae/imunologia , Pectinidae/metabolismo , Filogenia , Análise de Sequência de Proteína
12.
Acta Neuropathol Commun ; 11(1): 65, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062831

RESUMO

Unlike physiological stress, which carries survival value, pathological stress is widespread in modern society and acts as a main risk factor for visceral pain. As the main stress-responsive nucleus in the brain, the locus coeruleus (LC) has been previously shown to drive pain alleviation through direct descending projections to the spinal cord, but whether and how the LC mediates pathological stress-induced visceral pain remains unclear. Here, we identified a direct circuit projection from LC noradrenergic neurons to the rostral ventromedial medulla (RVM), an integral relay of the central descending pain modulation system. Furthermore, the chemogenetic activation of the LC-RVM circuit was found to significantly induce colorectal visceral hyperalgesia and anxiety-related psychiatric disorders in naïve mice. In a dextran sulfate sodium (DSS)-induced visceral pain model, the mice also presented colorectal visceral hypersensitivity and anxiety-related psychiatric disorders, which were associated with increased activity of the LC-RVM circuit; LC-RVM circuit inhibition markedly alleviated these symptoms. Furthermore, the chronic restraint stress (CRS) model precipitates anxiety-related psychiatric disorders and induces colorectal visceral hyperalgesia, which is referred to as pathological stress-induced hyperalgesia, and inhibiting the LC-RVM circuit attenuates the severity of colorectal visceral pain. Overall, the present study clearly demonstrated that the LC-RVM circuit could be critical for the comorbidity of colorectal visceral pain and stress-related psychiatric disorders. Both visceral inflammation and psychological stress can activate LC noradrenergic neurons, which promote the severity of colorectal visceral hyperalgesia through this LC-RVM circuit.


Assuntos
Neoplasias Colorretais , Dor Visceral , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Locus Cerúleo/patologia , Dor Visceral/patologia , Ratos Sprague-Dawley , Neoplasias Colorretais/patologia , Bulbo/patologia
13.
Hortic Res ; 10(6): uhad095, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350798

RESUMO

Although Al is not necessary or even toxic to most plants, it is beneficial for the growth of tea plants. However, the mechanism through which Al promotes root growth in tea plants remains unclear. In the present study, we found that flavonol glycoside levels in tea roots increased following Al treatment, and the Al-induced UDP glycosyltransferase CsUGT84J2 was involved in this mechanism. Enzyme activity assays revealed that rCsUGT84J2 exhibited catalytic activity on multiple types of substrates, including phenolic acids, flavonols, and auxins in vitro. Furthermore, metabolic analysis with UPLC-QqQ-MS/MS revealed significantly increased flavonol and auxin glycoside accumulation in CsUGT84J2-overexpressing Arabidopsis thaliana. In addition, the expression of genes involved in the flavonol pathway as well as in the auxin metabolism, transport, and signaling pathways was remarkably enhanced. Additionally, lateral root growth and exogenous Al stress tolerance were significantly improved in transgenic A. thaliana. Moreover, gene expression and metabolic accumulation related to phenolic acids, flavonols, and auxin were upregulated in CsUGT84J2-overexpressing tea plants but downregulated in CsUGT84J2-silenced tea plants. In conclusion, Al treatment induced CsUGT84J2 expression, mediated flavonol and auxin glycosylation, and regulated endogenous auxin homeostasis in tea roots, thereby promoting the growth of tea plants. Our findings lay the foundation for studying the precise mechanisms through which Al promotes the growth of tea plants.

14.
Neuroscience ; 524: 209-219, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958595

RESUMO

Postoperative cognitive dysfunction (POCD) is a medically induced, rapidly occurring postoperative disease, which is hard to recover and seriously threatens the quality of life, especially for elderly patients, so it is important to identify the risk factors for POCD and apply early intervention to prevent POCD. As we have known, pain can impair cognition, and many surgery patients experience different preoperative pain, but it is still unknown whether these patients are vulnerable for POCD. Here we found that chronic pain (7 days, but not 1 day acute pain) induced by Complete Freund's Adjuvant (CFA) injected in the hind paw of rats could easily induce spatial cognition and memory impairment after being exposed to sevoflurane anesthesia. Next, for the mechanisms, we focused on the Periaqueductal Gray Matter (PAG), a well-known pivotal nucleus in pain process. It was detected the existence of neural projection from ventrolateral PAG (vlPAG) to adjacent nucleus Dorsal Raphe (DR), the origin of serotonergic projection for the whole cerebrum, through virus tracing and patch clamp recordings. The Immunofluorescence staining and western blot results showed that Tryptophan Hydroxylase 2 (TPH2) for serotonin synthesis in the DR was increased significantly in the rats treated with CFA for 7 days and sevoflurane for 3 hours, while chemo-genetic inhibition of the vlPAG-DR projection induced obvious spatial learning and memory impairment. Our study suggests that preoperative chronic pain may facilitate cognitive function impairment after receiving anesthesia through the PAG-DR neural circuit, and preventative analgesia should be a considerable measure to reduce the incidence of POCD.


Assuntos
Dor Crônica , Complicações Cognitivas Pós-Operatórias , Humanos , Ratos , Animais , Idoso , Substância Cinzenta Periaquedutal/fisiologia , Núcleo Dorsal da Rafe , Sevoflurano , Qualidade de Vida
15.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36346677

RESUMO

The rostral ventromedial medulla (RVM) exerts bidirectional descending modulation of pain attributable to the activity of electrophysiologically identified pronociceptive ON and antinociceptive OFF neurons. Here, we report that GABAergic ON neurons specifically express G protein-coupled estrogen receptor (GPER). GPER+ neurons exhibited characteristic ON-like responses upon peripheral nociceptive stimulation. Optogenetic activation of GPER+ neurons facilitated, but their ablation abrogated, pain. Furthermore, activation of GPER caused depolarization of ON cells, potentiated pain, and ameliorated morphine analgesia through desensitizing µ-type opioid receptor-mediated (MOR-mediated) activation of potassium currents. In contrast, genetic ablation or pharmacological blockade of GPER attenuated pain, enhanced morphine analgesia, and delayed the development of morphine tolerance in diverse preclinical pain models. Our data strongly indicate that GPER is a marker for GABAergic ON cells and illuminate the mechanisms underlying hormonal regulation of pain and analgesia, thus highlighting GPER as a promising target for the treatment of pain and opioid tolerance.


Assuntos
Analgésicos Opioides , Morfina , Ratos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Tolerância a Medicamentos , Dor/tratamento farmacológico , Dor/genética , Neurônios , Receptores Opioides mu
16.
J Agric Food Chem ; 70(43): 14096-14108, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256444

RESUMO

Polyphenol-rich tea plants are aluminum (Al) accumulators. Whether an association exists between polyphenols and Al accumulation in tea plants remains unclear. This study revealed that the accumulation of the total Al and bound Al contents were both higher in tea samples with high flavonol content than in low, and Al accumulation in tea plants was significantly and positively correlated with their flavonol content. Furthermore, the capability of flavonols combined with Al was higher than that of epigallocatechin gallate (EGCG) and root proanthocyanidins (PAs) under identical conditions. Flavonol-Al complexes signals (94 ppm) were detected in the tender roots and old leaves of tea plants through solid-state 27Al nuclear magnetic resonance (NMR) imaging, and the strength of the signals in the high flavonol content tea samples was considerably stronger than that in the low flavonol content tea samples. This study provides a new perspective for studying Al accumulation in different tea varieties.


Assuntos
Alumínio , Camellia sinensis , Alumínio/metabolismo , Camellia sinensis/química , Folhas de Planta/química , Chá/metabolismo , Flavonóis/metabolismo
17.
Biomaterials ; 284: 121494, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413511

RESUMO

Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi-2D nanoassemblies and how these correlate with molecular structure and nanoscale architecture has remained unclear. In this report, we screen a broad range of surfactants, proteins, oils and cell types and correlate interfacial mechanical properties with stem cell expansion. Correlations suggest an impact of interfacial viscoelasticity on the regulation of such behaviour. We combine interfacial rheology and magnetic tweezer-based interfacial microrheology to characterise the viscoelastic profile of protein nanosheets assembled at liquid-liquid interfaces. Based on neutron reflectometry and transmission electron microscopy data, we propose that the amorphous nanoarchitecture of quasi-2D protein nanosheets controls their multi-scale viscoelasticity which, in turn, correlates with cell expansion. This understanding paves the way for the rational design of protein nanosheets for microdroplet and bioemulsion-based stem cell manufacturing and screening platforms.


Assuntos
Proteínas , Células-Tronco , Proliferação de Células , Proteínas/química , Reologia , Viscosidade
18.
Micromachines (Basel) ; 12(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922115

RESUMO

Rare-earth elements such as lanthanum and yttrium have wide utility in high-tech applications such as permanent magnets and batteries. The use of biopolymers and their composites as adsorbents for La (III) and Y (III) ions were investigated as a means to increase the uptake capacity. Previous work has revealed that composite materials with covalent frameworks that contain biopolymers such as pectin and chitosan have secondary adsorption sites for enhanced adsorption. Herein, the maximum adsorption capacity of a 5:1 Pectin-Chitosan composite with La (III) and Y (III) was 22 mg/g and 23 mg/g, respectively. Pectin-Chitosan composites of variable composition were characterized by complementary methods: spectroscopy (FTIR, 13C solids NMR), TGA, and zeta potential. This work contributes to the design of covalent Pectin-Chitosan biopolymer frameworks for the controlled removal of La (III) and Y (III) from aqueous media.

19.
J Colloid Interface Sci ; 594: 650-657, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33780768

RESUMO

The structuring of liquid-liquid and liquid-air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid-liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.


Assuntos
Proteínas , Anisotropia , Emulsões , Reologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa