Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(81): 12051-12064, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740301

RESUMO

Solution-processed organic photovoltaics (OPVs) is one of the most promising photovoltaic technologies in the energy field, due to their clean and renewable low-cost manufacturing potential. OPV has rapidly developed with the design and synthesis of highly efficient photovoltaic materials and the development of smart device engineering. To date, the majority of advanced OPV devices have been prepared using halogenated solvents, achieving power conversion efficiencies (PCE) exceeding 19% on a laboratory scale. However, for industrial-scale production, less toxic manufacturing processes and environmental sustainability are the key considerations. Therefore, this review summarizes recent advances in green solvent-based approaches for the preparation of OPVs, highlighting material design (including polymer donors and small molecule acceptors) and device engineering (co-solvent methods, additive strategies, post-treatment methods, and regulation of coating method), emphasizing crucial factors for achieving high performance in green solvent-processed OPV devices. This review presents potential future directions for green solvent-based OPVs, which may pave the way for future industrial development.

2.
Front Plant Sci ; 14: 1161539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077638

RESUMO

The 14-3-3 (GRF, general regulatory factor) regulatory proteins are highly conserved and are widely distributed throughout the eukaryotes. They are involved in the growth and development of organisms via target protein interactions. Although many plant 14-3-3 proteins were identified in response to stresses, little is known about their involvement in salt tolerance in apples. In our study, nineteen apple 14-3-3 proteins were cloned and identified. The transcript levels of Md14-3-3 genes were either up or down-regulated in response to salinity treatments. Specifically, the transcript level of MdGRF6 (a member of the Md14-3-3 genes family) decreased due to salt stress treatment. The phenotypes of transgenic tobacco lines and wild-type (WT) did not affect plant growth under normal conditions. However, the germination rate and salt tolerance of transgenic tobacco was lower compared to the WT. Transgenic tobacco demonstrated decreased salt tolerance. The transgenic apple calli overexpressing MdGRF6 exhibited greater sensitivity to salt stress compared to the WT plants, whereas the MdGRF6-RNAi transgenic apple calli improved salt stress tolerance. Moreover, the salt stress-related genes (MdSOS2, MdSOS3, MdNHX1, MdATK2/3, MdCBL-1, MdMYB46, MdWRKY30, and MdHB-7) were more strongly down-regulated in MdGRF6-OE transgenic apple calli lines than in the WT when subjected to salt stress treatment. Taken together, these results provide new insights into the roles of 14-3-3 protein MdGRF6 in modulating salt responses in plants.

3.
Transl Cancer Res ; 12(12): 3255-3265, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197072

RESUMO

Background: Traditional intensity-modulated radiation therapy (IMRT) planning for cervical cancer is time-consuming and require iterative repeated optimization. In this study, we focused on leveraging multi-criteria optimization (MCO) to reduce the impact of small bowel high-dose indices on other optimization targets, thereby providing a rapid approach to individualized IMRT for cervical cancer patients. Methods: Our research involved a cohort of 25 cervical cancer patients who underwent IMRT radiotherapy. The patient inclusion criteria were as follows: (I) histopathological confirmation of cervical cancer, (II) underwent IMRT radiation therapy, and (III) a prescribed dose of 180 cGy/28 fractions for the patient. All plans were replanned by an experienced dosimetrist without the MCO (W-IMRT). On the basis of the W-IMRT plan, the individualized IMRT (I-IMRT) plan was generated under the priority trade-off of reducing the D2cc (D2cc is the minimal dose to the 2 cm3 of the small bowel receiving the maximal dose) index of the small bowel using the MCO method, maintaining target coverage and protecting other organs at risk (OARs) as much as possible. Statistical analysis was performed using the Wilcoxon signature rank test. Results: When the MCO method was applied to the IMRT plan, the high dose index decreased in the overlapping area between the small bowel and the planning treatment volume (PTV) (P<0.001, respectively). The D2cc index of the small bowel decreased to below 5,200 cGy in all I-IMRT plans. On the other hand, in PTV, the I-IMRT plan achieved a better homogeneity index (HI) compared to the W-IMRT plan. Significant dose reductions were also observed in the bladder (Dmean 144.8 cGy and V40 1.45%) (P<0.001, respectively), rectum (Dmean 43.9 cGy and V40 2.7%) (P<0.001, respectively) and bilateral femur heads (Dmean 150 cGy) (P<0.001, respectively). Conclusions: Dosimetric differences suggest that the I-IMRT plan using the MCO method provides better protection of other OARs and equivalently in PTV coverage, while lowering the high-dose index in the small bowel as much as possible for patients with cervical cancer, thus providing a rapid approach to achieving individualized IMRT for cervical cancer patients.

4.
Adv Sci (Weinh) ; 8(13): 2004490, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258155

RESUMO

From basic research to industry process, battery energy storage systems have played a great role in the informatization, mobility, and intellectualization of modern human society. Some potential systems such as Li, Na, K, Mg, Zn, and Al secondary batteries have attracted much attention to maintain social progress and sustainable development. As one of the components in batteries, electrolytes play an important role in the upgrade and breakthrough of battery technology. Since room-temperature ionic liquids (ILs) feature high conductivity, nonflammability, nonvolatility, high thermal stability, and wide electrochemical window, they have been widely applied in various battery systems and show great potential in improving battery stability, kinetics performance, energy density, service life, and safety. Thus, it is a right time to summarize these progresses. In this review, the composition and classification of various ILs and their recent applications as electrolytes in diverse metal-ion batteries (Li, Na, K, Mg, Zn, Al) are outlined to enhance the battery performances.

5.
Adv Healthc Mater ; 9(11): e1901819, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32351053

RESUMO

Nanoenzymes perceive the properties of enzyme-like catalytic activity, thereby offering significant cancer therapy potential. In this study, Fe3 O4 @MnO2 , a magnetic field (MF) targeting nanoenzyme with a core-shell structure, is synthesized and applied to radiation enhancement with using glucose oxidase (GOX) for combination therapy. The glucose is oxidized by the GOX to produce excess H2 O2 in an acidic extracellular microenvironment, following which the MnO2 shell reacts with H2 O2 to generate O2 and overcome hypoxia. Concurrently, intracellular glutathione (GSH)-which limits the effects of radiotherapy (RT)-can be oxidized by the MnO2 shell while the latter is reduced to Mn2+ for T1 -weighed MRI. The core Fe3 O4 , with its good magnetic targeting ability, can be utilized for T2 -weighed MRI. In summary, the work demonstrates that Fe3 O4 @MnO2 , as a dual T1 - and T2 -weighed MRI contrast agent with strong biocompatibility, exhibits striking potential for radiation enhancement under magnetic targeting.


Assuntos
Glucose Oxidase , Compostos de Manganês , Glutationa , Humanos , Hipóxia , Óxidos
6.
Mol Plant ; 12(8): 1114-1122, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059826

RESUMO

Many microRNAs (miRNAs) are critical regulators of plant antiviral defense. However, little is known about how these miRNAs respond to virus invasion at the transcriptional level. We previously show that defense against Rice stripe virus (RSV) invasion entailed a reduction of miR528 accumulation in rice, alleviating miR528-mediated degradation of L-Ascorbate Oxidase (AO) mRNA and bolstering the antiviral activity of AO. Here we show that the miR528-AO defense module is regulated by the transcription factor SPL9. SPL9 displayed high-affinity binding to specific motifs within the promoter region of miR528 and activated the expression of miR528 gene in vivo. Loss-of-function mutations in SPL9 caused a significant reduction in miR528 accumulation but a substantial increase of AO mRNA, resulting in enhanced plant resistance to RSV. Conversely, transgenic overexpression of SPL9 stimulated the expression of miR528 gene, hence lowering the level of AO mRNA and compromising rice defense against RSV. Importantly, gain in RSV susceptibility did not occur when SPL9 was overexpressed in mir528 loss-of-function mutants, or in transgenic rice expressing a miR528-resistant AO. Taken together, the finding of SPL9-mediated transcriptional activation of miR528 expression adds a new regulatory layer to the miR528-AO antiviral defense pathway.


Assuntos
MicroRNAs/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , Oryza/virologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Tenuivirus/genética , Tenuivirus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa