Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Hum Brain Mapp ; 45(3): e26597, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375948

RESUMO

Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.


Assuntos
Medula Cervical , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Medula Cervical/diagnóstico por imagem , Imagem Ecoplanar/métodos , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
2.
Cereb Cortex ; 33(9): 5055-5065, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36190444

RESUMO

Females are considered the more empathic sex. This conventional view, however, has been challenged in the past few decades with mixed findings. These heterogeneous findings could be caused by the fact that empathy is a complex and multifaceted construct. To clarify whether sex differences exist in certain dimensions of empathy and whether they are associated with specific neural bases, this study measured trait empathy using the interpersonal reactivity index (IRI) and collected brain structural and functional magnetic resonance imaging data in a large sample of healthy participants (206 males vs. 302 females). We found that females scored higher in the personal distress (PD) subscale than males, but they were comparable to males in other IRI subscales. Sex difference in PD was encoded by brain structural (e.g. gray matter volume in left anterior insula [AI]) and functional (e.g. resting-state functional connectivity between left AI and temporoparietal junction/inferior frontal gyrus) characteristics. Notably, the relationship between sex and PD was indirect-only and serially mediated by AI-associated structural and functional characteristics. Altogether, our results suggested that sex difference existed in self-oriented affective empathy (i.e. PD) and highlighted the importance of the AI, both structurally and functionally, in mediating the sex difference in trait empathy.


Assuntos
Empatia , Caracteres Sexuais , Humanos , Masculino , Feminino , Córtex Cerebral , Encéfalo , Mapeamento Encefálico
3.
Age Ageing ; 53(5)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776215

RESUMO

BACKGROUND: Pain sensitivity varies across multimodal somatosensory stimuli that can rely on different conductive fibres, which, when damaged, will lead to neuropathies. However, there is limited research examining the characteristics of perceived pain, particularly as affected by the ageing process, as induced by various somatosensory stimuli that may rely on small or large fibres. METHODS: Using heat and pressure stimuli on small and large fibres separately on both younger and older adults, this study examined age-associated changes in pain perception by measuring self-reported pain sensitivity, pain threshold and pain discriminability. RESULTS: Heat pain threshold was significantly positively correlated with age, but not pressure pain threshold. Pain threshold increased and pain discriminability decreased in response to heat stimuli in the older participants compared with the younger ones. CONCLUSION: An age-associated decline in heat pain perception was observed, suggesting an earlier degradation of heat perception. These findings provide new insight into understanding and assessing somatosensory disorders, which can help ageing populations better maintain healthy sensory functioning.


Assuntos
Envelhecimento , Temperatura Alta , Medição da Dor , Percepção da Dor , Limiar da Dor , Humanos , Idoso , Masculino , Feminino , Envelhecimento/psicologia , Envelhecimento/fisiologia , Fatores Etários , Adulto , Temperatura Alta/efeitos adversos , Medição da Dor/métodos , Adulto Jovem , Pessoa de Meia-Idade , Pressão , Idoso de 80 Anos ou mais
4.
J Neurosci ; 42(14): 2963-2972, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35232762

RESUMO

As a predominately positive emotion, nostalgia serves various adaptive functions, including a recently revealed analgesic effect. The current fMRI study aimed to explore the neural mechanisms underlying the nostalgia-induced analgesic effect on noxious thermal stimuli of different intensities. Human participants' (males and females) behavior results showed that the nostalgia paradigm significantly reduced participants' perception of pain, particularly at low pain intensities. fMRI analysis revealed that analgesia was related to decreased brain activity in pain-related brain regions, including the lingual and parahippocampal gyrus. Notably, anterior thalamic activation during the nostalgia stage predicted posterior parietal thalamus activation during the pain stage, suggesting that the thalamus might play a key role as a central functional linkage in the analgesic effect. Moreover, while thalamus-PAG functional connectivity was found to be related to nostalgic strength, periaqueductal gray-dorsolateral prefrontal cortex (PAG-dlPFC) functional connectivity was found to be associated with pain perception, suggesting possible analgesic modulatory pathways. These findings demonstrate the analgesic effect of nostalgia and, more importantly, shed light on its neural mechanism.SIGNIFICANCE STATEMENT Nostalgia is known to reduce individuals' perception of physical pain. The underlying brain mechanisms, however, are unclear. Our study found that the thalamus plays a key role as a functional linkage between nostalgia and pain, suggesting a possible analgesic modulatory mechanism of nostalgia. These findings have implications for the underlying brain mechanisms of psychological analgesia.


Assuntos
Analgesia , Mapeamento Encefálico , Analgesia/métodos , Analgésicos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Dor , Percepção da Dor/fisiologia
5.
Neuroimage ; 278: 120301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524169

RESUMO

Long-term dance training offers numerous benefits, including improvements in physical health, posture, body coordination, and mental health and well-being. Since dance is an art form of body-to-body communication, professional dancers may share feelings and thoughts on dance with their partners, owing to their shared training experiences. Considering this perspective, one may expect that professional dancers would demonstrate pronounced neural similarities when viewing dancing videos, which could be associated with their training duration. To test these hypotheses, we collected functional magnetic resonance imaging (fMRI) data while presenting ballroom dancing and neutral video clips with long durations (∼100 s each) to 41 professional ballroom dancers (19 pairs of dance partners) and 39 age- and sex-matched nondancers. Our findings revealed that dancers exhibited broader and stronger neural similarities across the whole brain when watching dancing video clips, as compared to the control group. These increased neural similarities could be interpreted in at least two distinct ways. First, neural similarities in certain brain regions within the motor control circuit (i.e., frontal cortical-basal ganglia-thalamic circuit) were significantly correlated with dance-related information (e.g., dance partners' cooperation duration), which reinforced the impact of long-term dance training on neural synchronization. Second, neural similarities in other brain regions (e.g., memory-related brain regions) were significantly correlated with subjects' impression of the viewed videos (i.e., whether they have watched before, familiarity, and liking), which may not necessarily be directly linked to long-term dance training. Altogether, our study provided solid evidence for synchronized neural mechanisms in professional dancers due to long-term dance training.


Assuntos
Encéfalo , Dança , Humanos , Emoções , Gânglios da Base , Reconhecimento Psicológico , Imageamento por Ressonância Magnética
6.
Hum Brain Mapp ; 44(2): 315-326, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972315

RESUMO

Dance is unique in that it is a sport and an art simultaneously. Beyond improving sensorimotor functions, dance training could benefit high-level emotional and cognitive functions. Duo dances also confer the possibility for dancers to develop the abilities to recognize, understand, and share the thoughts and feelings of their dance partners during the long-term dance training. To test this possibility, we collected high-resolution structural and resting-state functional magnetic resonance imaging (MRI) data from 43 expert-level ballroom dancers (a model of long-term exposure to duo dance training) and 40 age-matched and sex-matched nondancers, and measured their empathic ability using a self-report trait empathy scale. We found that ballroom dancers showed higher scores of empathic concern (EC) than controls. The EC scores were positively correlated with years with dance partners but negatively correlated with the number of dance partners for ballroom dancers. These behavioral results were supported by the structural and functional MRI data. Structurally, we observed that the gray matter volumes in the subgenual anterior cingulate cortex (ACC) and EC scores were positively correlated. Functionally, the connectivity between ACC and occipital gyrus was positively correlated with both EC scores and years with dance partners. In addition, the relationship between years with dance partners and EC scores was indirect-only mediated by the ACC-occipital gyrus functional connectivity. Therefore, our findings provided solid evidence for the close link between long-term ballroom dance training and empathy, which deepens our understanding of the neural mechanisms underlying this phenomenon.


Assuntos
Dança , Humanos , Dança/psicologia , Empatia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico
7.
Hum Brain Mapp ; 43(17): 5167-5179, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751551

RESUMO

Studies on functional and structural changes in the primary somatosensory cortex (S1) have provided important insights into neural mechanisms underlying several chronic pain conditions. However, the role of S1 plasticity in postherpetic neuralgia (PHN) remains elusive. Combining psychophysics and magnetic resonance imaging (MRI), we investigated whether pain in PHN patients is linked to S1 reorganization as compared with healthy controls. Results from voxel-based morphometry showed no structural differences between groups. To characterize functional plasticity, we compared S1 responses to noxious laser stimuli of a fixed intensity between both groups and assessed the relationship between S1 activation and spontaneous pain in PHN patients. Although the intensity of evoked pain was comparable in both groups, PHN patients exhibited greater activation in S1 ipsilateral to the stimulated hand. Pain-related activity was identified in contralateral superior S1 (SS1) in controls as expected, but in bilateral inferior S1 (IS1) in PHN patients with no overlap between SS1 and IS1. Contralateral SS1 engaged during evoked pain in controls encoded spontaneous pain in patients, suggesting functional S1 reorganization in PHN. Resting-state fMRI data showed decreased functional connectivity between left and right SS1 in PHN patients, which scaled with the intensity of spontaneous pain. Finally, multivariate pattern analyses (MVPA) demonstrated that BOLD activity and resting-state functional connectivity of S1 predicted within-subject variations of evoked and spontaneous pain intensities across groups. In summary, functional reorganization in S1 might play a key role in chronic pain related to PHN and could be a potential treatment target in this patient group.


Assuntos
Dor Crônica , Neuralgia Pós-Herpética , Humanos , Neuralgia Pós-Herpética/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Medição da Dor/métodos
8.
Mol Psychiatry ; 26(12): 7475-7480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34285348

RESUMO

Previous coronavirus pandemics were associated elevated post-traumatic stress symptoms (PTSS), but the self-report and neurological basis of PTSS in patients who survived coronavirus disease 2019 (COVID-19) are largely unknown. We conducted a two-session study to record PTSS in the COVID-19 survivors discharged from hospitals for a short (i.e., about 3 months, Session 1) to a medium period (i.e., about 6 months, Session 2), as well as brain imaging data in Session 2. The control groups were non-COVID-19 locals. Session 1 was completed for 126 COVID-19 survivors and 126 controls. Session 2 was completed for 47 COVID-19 survivors and 43 controls. The total score of post-traumatic stress disorder (PTSD) checklist for DSM-5 (PCL-5) score was significantly higher in COVID-19 survivors compared with controls in both sessions. The PCL-5 score in COVID-19 survivors was positively correlated with the duration after discharge (r = 0.27, p = 0.003 for Session 1), and increased by 20% from Session 1 to Session 2 for the survivors who participated both sessions. The increase was positively correlated with individual's test-retest duration (r = 0.46, p = 0.03). Brain structural volume and functional activity in bilateral hippocampus and amygdala were significantly larger in COVID-19 survivors compared with controls. However, the volumes of the left hippocampus and amygdala were negatively correlated with the PCL-5 score for the COVID-19 survivors. Our study suggests that COVID-19 survivors might face possible PTSS deteriorations, and highlights the importance of monitoring mental wellness of COVID-19 survivors.


Assuntos
COVID-19 , Transtornos de Estresse Pós-Traumáticos , Seguimentos , Hipocampo , Humanos , Neuroimagem , SARS-CoV-2 , Autorrelato , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Sobreviventes
9.
Mult Scler ; 28(14): 2221-2230, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35971567

RESUMO

BACKGROUND: Due to lack of biomarkers, antibody-negative patients with features of neuromyelitis optica spectrum disorders (NMOSD) are among the most challenging to diagnose and treat. Using unsupervised clustering, we recently identified 'MS-like', 'spinal MS-like', 'classic NMOSD-like' and 'NMOSD-like with brain involvement' subgroups in this cohort. OBJECTIVE: We used magnetic resonance spectroscopy (MRS) to examine differences in the level of key metabolites in the spinal cord between the four identified subgroups. METHODS: Twenty-five relapsing antibody-negative patients with NMOSD features classified by the unsupervised algorithm to one of the subgroups underwent a prospective cervical spinal cord MRS. Spectra from 16 patients fulfilled quality criteria and were included in the analysis. RESULTS: Total N-acetylaspartate (tNAA), but not total choline (tCho) or myo-inositol (Ins), was significantly different between the four subgroups (p = 0.03). In particular, tNAA was 47.8% lower in the 'MS-like' subgroup as compared with the 'classic NMOSD-like' subgroup (p = 0.02). While we found a negative overall correlation between tNAA and disability score (r = -0.514, p = 0.04) in the whole cohort, the disability score did not differ significantly between the subgroups to explain subgroup differences in tNAA level. CONCLUSIONS: Significant differences in the cervical spinal cord tNAA measurements confirm that the previously identified clinico-radiologic subgroups contain patients with distinct underlying disease processes.


Assuntos
Medula Cervical , Neuromielite Óptica , Humanos , Medula Cervical/diagnóstico por imagem , Estudos Prospectivos , Medula Espinal/diagnóstico por imagem
10.
Brain ; 144(1): 198-212, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33206944

RESUMO

Spinal cord involvement is a hallmark feature of multiple sclerosis, neuromyelitis optica with AQP4 antibodies and MOG-antibody disease. In this cross-sectional study we use quantitative spinal cord MRI to better understand these conditions, differentiate them and associate with relevant clinical outcomes. Eighty participants (20 in each disease group and 20 matched healthy volunteers) underwent spinal cord MRI (cervical cord: 3D T1, 3D T2, diffusion tensor imaging and magnetization transfer ratio; thoracic cord: 3D T2), together with disability, pain and fatigue scoring. All participants had documented spinal cord involvement and were at least 6 months post an acute event. MRI scans were analysed using publicly available software. Those with AQP4-antibody disease showed a significant reduction in cervical cord cross-sectional area (P = 0.038), thoracic cord cross-sectional area (P = 0.043), cervical cord grey matter (P = 0.011), magnetization transfer ratio (P ≤ 0.001), fractional anisotropy (P = 0.004) and increased mean diffusivity (P = 0.008). Those with multiple sclerosis showed significantly increased mean diffusivity (P = 0.001) and reduced fractional anisotropy (P = 0.013), grey matter volume (P = 0.002) and magnetization transfer ratio (P = 0.011). In AQP4-antibody disease the damage was localized to areas of the cord involved in the acute attack. In multiple sclerosis this relationship with lesions was absent. MOG-antibody disease did not show significant differences to healthy volunteers in any modality. However, when considering only areas involved at the time of the acute attack, a reduction in grey matter volume was found (P = 0.023). This suggests a predominant central grey matter component to MOG-antibody myelitis, which we hypothesize could be partially responsible for the significant residual sphincter dysfunction. Those with relapsing MOG-antibody disease showed a reduction in cord cross-sectional area compared to those with monophasic disease, even when relapses occurred elsewhere (P = 0.012). This suggests that relapsing MOG-antibody disease is a more severe phenotype. We then applied a principal component analysis, followed by an orthogonal partial least squares analysis. MOG-antibody disease was discriminated from both AQP4-antibody disease and multiple sclerosis with moderate predictive values. Finally, we assessed the clinical relevance of these metrics using a multiple regression model. Cervical cord cross-sectional area associated with disability scores (B = -0.07, P = 0.0440, R2 = 0.20) and cervical cord spinothalamic tract fractional anisotropy associated with pain scores (B = -19.57, P = 0.016, R2 = 0.55). No spinal cord metric captured fatigue. This work contributes to our understanding of myelitis in these conditions and highlights the clinical relevance of quantitative spinal cord MRI.


Assuntos
Esclerose Múltipla/patologia , Neuromielite Óptica/patologia , Medula Espinal/patologia , Adulto , Autoanticorpos/imunologia , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem
11.
Neuroimage ; 244: 118644, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637906

RESUMO

Gender discrimination is a serious social issue that has been shown to increase negative consequences, especially in females when accompanied by acute or chronic pain. Experiencing social pain through discrimination can increase an individual's evaluation of evoked physical pain. However, few studies have explored the mechanism underlying how gender discrimination modulates brain responses when individuals experience physical pain evoked by noxious stimuli. In this study, we addressed this issue using a gender discrimination fMRI paradigm with thermal pain stimulation. We found that discrimination indeed affected participants' own behavioral self-evaluation of noxious stimuli. Discrimination-encoded brain activations were identified in the temporopolar cortex, while brain activations to thermal stimuli after viewing pictures of discrimination were found in the dorsal anterior cingulate cortex (dACC). Brain activations in the temporopolar cortex and the dACC were correlated. Furthermore, pain perception-specific functional connectivity of the dACC-SII in the cue stage and the dACC-frontal in the pain stage were identified, suggesting a facilitative effect of gender discrimination on females' experience of physical pain. Our results indicate that the dACC may play a central role in mediating the affective aspect of physical pain after experiencing discrimination. These findings provide novel insights into the underlying mechanism of how gender discrimination facilitates females' experience of physical pain.


Assuntos
Encéfalo/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Sexismo , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Vias Neurais , Adulto Jovem
12.
Neuroimage ; 238: 118225, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062267

RESUMO

Magnetic Resonance Spectroscopy (MRS) allows for the non-invasive quantification of neurochemicals and has the potential to differentiate between the pathologically distinct diseases, multiple sclerosis (MS) and AQP4Ab-positive neuromyelitis optica spectrum disorder (AQP4Ab-NMOSD). In this study we characterised the metabolite profiles of brain lesions in 11 MS and 4 AQP4Ab-NMOSD patients using an optimised MRS methodology at ultra-high field strength (7T) incorporating correction for T2 water relaxation differences between lesioned and normal tissue. MS metabolite results were in keeping with the existing literature: total N-acetylaspartate (NAA) was lower in lesions compared to normal appearing brain white matter (NAWM) with reciprocal findings for myo-Inositol. An unexpected subtlety revealed by our technique was that total NAA differences were likely driven by NAA-glutamate (NAAG), a ubiquitous CNS molecule with functions quite distinct from NAA though commonly quantified together with NAA in MRS studies as total NAA. Surprisingly, AQP4Ab-NMOSD showed no significant differences for total NAA, NAA, NAAG or myo-Inositol between lesion and NAWM sites, nor were there any differences between MS and AQP4Ab-NMOSD for a priori hypotheses. Post-hoc testing revealed a significant correlation between NAWM Ins:NAA and disability (as measured by EDSS) for disease groups combined, driven by the AP4Ab-NMOSD group. Utilising an optimised MRS methodology, our study highlights some under-explored subtleties in MRS profiles, such as the absence of myo-Inositol concentration differences in AQP4Ab-NMOSD brain lesions versus NAWM and the potential influence of NAAG differences between lesions and normal appearing white matter in MS.


Assuntos
Química Encefálica , Espectroscopia de Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/metabolismo , Neuromielite Óptica/metabolismo , Adulto , Aquaporina 4/imunologia , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Autoanticorpos/análise , Autoantígenos/imunologia , Feminino , Gliose/diagnóstico por imagem , Gliose/metabolismo , Gliose/patologia , Glutamatos/análise , Humanos , Inositol/análise , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Proteínas do Tecido Nervoso/imunologia , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Adulto Jovem
13.
Neural Plast ; 2021: 7498714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659398

RESUMO

Numerous neuroimaging studies have demonstrated that the brain plasticity is associated with chronic low back pain (cLBP). However, there is a lack of knowledge regarding the underlying mechanisms of thalamic pathways for chronic pain and psychological effects in cLBP caused by lumbar disc herniation (LDH). Combining psychophysics and magnetic resonance imaging (MRI), we investigated the structural and functional brain plasticity in 36 patients with LDH compared with 38 age- and gender-matched healthy controls. We found that (1) LDH patients had increased psychophysical disturbs (i.e., depression and anxiety), and depression (Beck-Depression Inventory, BDI) was found to be an outstanding significant factor to predict chronic pain (short form of the McGill Pain Questionnaire, SF-MPQ); (2) the LDH group showed significantly smaller fractional anisotropy values in the region of posterior corona radiate while gray matter volumes were comparable in both groups; (3) resting state functional connectivity analysis revealed that LDH patients exhibited increased temporal coupling between the thalamus and dorsolateral prefrontal cortex (DLPFC), which further mediate the relationship from chronic pain to depression. Our results emphasized that thalamic pathways underlying prefrontal cortex might play a key role in regulating chronic pain and depression of the pathophysiology of LDH.


Assuntos
Dor Crônica/diagnóstico por imagem , Depressão/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Dor Lombar/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Dor Crônica/fisiopatologia , Depressão/fisiopatologia , Córtex Pré-Frontal Dorsolateral/fisiopatologia , Feminino , Humanos , Dor Lombar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Medição da Dor/métodos , Tálamo/fisiopatologia , Fatores de Tempo
14.
Neural Plast ; 2021: 6612456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854543

RESUMO

People with stigmatized characteristics tend to be devalued by others in a given society. The negative experiences related to stigma cause individuals to struggle as they would if they were in physical pain and bring various negative outcomes in the way that physical pain does. However, it is unclear whether stigma related to one's identity would affect their perception of physical pain. To address this issue, using sexism-related paradigms, we found that females had reduced pain threshold/tolerance in the Cold Pressor Test (Experiment 1) and an increased rating for nociceptive laser stimuli with fixed intensity (Experiment 2). Additionally, we observed that there was a larger laser-evoked N1, an early laser-evoked P2, and a larger magnitude of low-frequency component in laser-evoked potentials (LEPs) in the stigma condition than in the control condition (Experiment 3). Our study provides behavioral and electrophysiological evidence that sexism-related stigma affects the pain perception of females.


Assuntos
Medição da Dor/métodos , Percepção da Dor/fisiologia , Sexismo/psicologia , Inquéritos e Questionários , Adolescente , Adulto , Temperatura Baixa/efeitos adversos , Feminino , Humanos , Potenciais Evocados por Laser/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
15.
Sheng Li Xue Bao ; 73(3): 369-388, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34230941

RESUMO

Spinal cord magnetic resonance imaging (MRI) is an advanced imaging technique (mainly in the cervical cord) and has been gradually used in basic scientific research such as human sensation and motor function, and clinical applications such as spinal cord injury, myelitis, and chronic pain, etc. The development of spinal cord MRI is still at the early stage compared with brain MRI and limited by the current MRI technology and data analysis methods. This review focuses on the methods and applications of spinal cord MRI technology in the basic research fields of cognitive neuroscience and clinical application. Firstly, we will introduce the imaging principle, methods, measurement standards, and applications of most commonly used multimodal spinal cord MRI techniques, including quantitative spinal cord MRI (such as structural, diffusion, spectroscopy, myelin water, magnetization transfer, and chemical exchange saturation transfer imaging, etc.) and spinal functional MRI (fMRI). Secondly, we will discuss the technical challenges and possible solutions of spinal cord MRI data processing from the three dimensions of denoising, data processing pipeline optimization, and repeatability and reliability. Finally, we will discuss the application status and development prospects of spinal cord MRI.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes , Medula Espinal/diagnóstico por imagem
16.
Sheng Li Xue Bao ; 73(6): 953-962, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34961870

RESUMO

Nicotine is the main addictive component in cigarettes that motivates dependence on tobacco use for smokers and makes it difficult to quit through regulating a variety of neurotransmitter release and receptor activations in the brain. Even though nicotine has an analgesic effect, clinical studies demonstrated that nicotine abstinence reduces pain threshold and increases pain sensitivity in smoking individuals. The demand for opioid analgesics in nicotine abstinent patients undergoing surgery has greatly increased, which results in many side effects, such as nausea, vomiting, and respiratory depression, etc. In addition, these side effects would hinder patients' physical and psychological recovery. Therefore, identifying the neural mechanism of the increase of pain sensitivity induced by nicotine abstinence and deriving a way to cope with the increased demand for postoperative analgesics would have enormous basic and clinical implications. In this review, we first discussed different experimental pain stimuli (e.g., cold, heat, and mechanical pain)-induced pain sensitivity changes after a period of nicotine dependence/abstinence from both animal and human studies. Then, we summarized the effects of the brain neurotransmitter release (e.g., serotonin, norepinephrine, endogenous opioids, dopamine, and γ-aminobutyric acid) and their corresponding receptor activation changes after nicotine abstinence on pain sensitivity. Finally, we discussed the limits in recent studies. We proposed that more attention should be paid to human studies, especially studies among chronic pain patients, and functional magnetic resonance imaging might be a useful tool to reveal the mechanisms of abstinence-induced pain sensitivity changes. Besides, considering the influence of duration of nicotine dependence/abstinence and gender on pain sensitivity, we proposed that the effects of nicotine abstinence and individual differences (e.g., duration of abstinence from smoking, chronic/acute abstinence, and gender) on abstinence-induced pain sensitivity should be fully considered in formulating pain treatment protocols. In summary, this paper could deepen our understanding of nicotine abstinence-induced pain sensitivity changes and its underlying neural mechanism, and could also provide effective scientific theories to guide clinical pain diagnosis and treatment, which has important clinical significance.


Assuntos
Abandono do Hábito de Fumar , Tabagismo , Animais , Humanos , Nicotina/efeitos adversos , Dor , Limiar da Dor
17.
Neuroimage ; 221: 117186, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711060

RESUMO

Postherpetic Neuralgia (PHN), develops after the resolution of the herpes zoster mucocutaneous eruption, is a debilitating chronic pain. However, there is a lack of knowledge regarding the underlying mechanisms associated with ascending and descending pain modulations in PHN patients. Here, we combined psychophysics with structural and functional magnetic resonance imaging (MRI) techniques to investigate the brain alternations in PHN patients. Psychophysical tests showed that compared with healthy controls, PHN patients had increased state and trait anxiety and depression. Structural MRI data indicated that PHN patients had significantly smaller gray matter volumes of the thalamus and amygdala than healthy controls, and the thalamus volume was negatively correlated with pain intensity (assessed using the Short-form of the McGill pain questionnaire) in PHN patients. When the thalamus and periaqueductal gray matter (PAG) were used as the seeds, resting-state functional MRI data revealed abnormal patterns of functional connectivity within ascending and descending pain pathways in PHN patients, e.g., increased functional connectivity between the thalamus and somatosensory cortices and decreased functional connectivity between the PAG and frontal cortices. In addition, subjective ratings of both Present Pain Index (PPI) and Beck-Depression Inventory (BDI) were negatively correlated with the strength of functional connectivity between the PAG and primary somatosensory cortex (SI), and importantly, the effect of BDI on PPI was mediated by the PAG-SI functional connectivity. Overall, our results provided evidence suggesting deficits in ascending and descending pain modulation pathways, which were highly associated with the intensity of chronic pain and its emotional comorbidities in PHN patients. Therefore, our study deepened our understanding of the pathogenesis of PHN, which would be helpful in determining the optimized treatment for the patients.


Assuntos
Tonsila do Cerebelo , Córtex Cerebral , Conectoma , Substância Cinzenta , Imageamento por Ressonância Magnética , Rede Nervosa , Neuralgia Pós-Herpética/fisiopatologia , Substância Cinzenta Periaquedutal , Tálamo , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Depressão/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Neuralgia Pós-Herpética/diagnóstico por imagem , Neuralgia Pós-Herpética/patologia , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Substância Cinzenta Periaquedutal/patologia , Substância Cinzenta Periaquedutal/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/fisiopatologia
18.
Hum Brain Mapp ; 41(7): 1738-1753, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31868305

RESUMO

Clinical observations showed that schizophrenia (SCZ) patients reported little or no pain under various conditions that are commonly associated with intense painful sensations, leading to a higher risk of morbidity and mortality. However, this phenomenon has received little attention and its underlying neural mechanisms remain unclear. Here, we conducted two experiments combining psychophysics, electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques to investigate neural mechanisms of pain insensitivity in SCZ patients. Specifically, we adopted a stimulus-response paradigm with brief stimuli of different sensory modalities (i.e., nociceptive, non-nociceptive somatosensory, and auditory) to test whether pain insensitivity in SCZ patients is supra-modal or modality-specific, and used EEG and fMRI techniques to clarify its neural mechanisms. We observed that perceived intensities to nociceptive stimuli were significantly smaller in SCZ patients than healthy controls, whereas perceived intensities to non-nociceptive somatosensory and auditory stimuli were not significantly different. The behavioral results were confirmed by stimulus-evoked brain responses sampled by EEG and fMRI techniques, thus verifying the modality-specific nature of the modulation of nociceptive information processing in SCZ patients. Additionally, significant group differences were observed in the spectral power of alpha oscillations in prestimulus EEG and the seed-based functional connectivity in resting-state fMRI (seeds: the thalamus and periaqueductal gray that are key nodes in ascending and descending pain pathways respectively), suggesting a possible contribution of cortical-subcortical dysfunction to the phenomenon. Overall, our study provides insight into the neural mechanisms of pain insensitivity in SCZ and highlights a need for systematic assessments of their pain-related diseases.


Assuntos
Dor/diagnóstico por imagem , Dor/etiologia , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Psicologia do Esquizofrênico , Estimulação Acústica , Adulto , Ritmo alfa , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Potenciais Somatossensoriais Evocados , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Dor/psicologia , Medição da Dor , Psicofísica , Adulto Jovem
19.
Hum Brain Mapp ; 40(14): 4202-4212, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31206892

RESUMO

The study of individuals at high-altitude (HA) exposure provides an important opportunity for unraveling physiological and psychological mechanism of brain underlying hypoxia condition. However, this has rarely been assessed longitudinally. We aim to explore the cognitive and cerebral microstructural alterations after chronic HA exposure. We recruited 49 college freshmen who immigrated to Tibet and followed up for 2 years. Control group consisted of 49 gender and age-matched subjects from sea level. Neuropsychological tests were also conducted to determine whether the subjects' cognitive function had changed in response to chronic HA exposure. Surface-based cortical and subcortical volumes were calculated from structural magnetic resonance imaging data, and tract-based spatial statistics (TBSS) analysis of white matter (WM) fractional anisotropy (FA) based on diffusion weighted images were performed. Compared to healthy controls, the high-altitude exposed individuals showed significantly lower accuracy and longer reaction times in memory tests. Significantly decreased gray matter volume in the caudate region and significant FA changes in multiple WM tracts were observed for HA immigrants. Furthermore, differences in subcortical volume and WM integration were found to be significantly correlated with the cognitive changes after 2 years' HA exposure. Cognitive functions such as working memory and psychomotor function were found to be impaired during chronic HA. Differences of brain subcortical volumes and WM integration between HA and sea-level participants indicated potential impairments in the brain structural modifications and microstructural integrity of WM tracts after HA exposure.


Assuntos
Doença da Altitude/patologia , Doença da Altitude/fisiopatologia , Altitude , Encéfalo/patologia , Encéfalo/fisiopatologia , Adolescente , Anisotropia , Cognição/fisiologia , Imagem de Difusão por Ressonância Magnética , Emigrantes e Imigrantes , Feminino , Humanos , Estudos Longitudinais , Masculino , Tibet , Adulto Jovem
20.
Mult Scler ; 25(2): 246-255, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172994

RESUMO

BACKGROUND: Recent basic and clinical evidence suggests amiloride may be neuroprotective in multiple sclerosis (MS) through the blockade of the acid sensing ion channel (ASIC). OBJECTIVE: To examine the neuroprotective efficacy of amiloride in acute optic neuritis (ON). METHODS: A total of 48 patients were recruited to a phase 2, double blind, single site, randomised controlled trial. Scanning laser polarimetry (GDx) at 6 months was the primary outcome measure and optical coherence tomography (OCT) and visual and electrophysiological measures were secondary outcome measures. Participants aged 18-55 years, ≤28 days of onset of first episode unilateral ON, were randomised to amiloride (10 mg daily for 5 months) or placebo ( clinicaltrials.gov , NCT 01802489). RESULTS: Intention-to-treat (ITT) cohort consisted of 43 patients; 23 placebo and 20 amiloride. No significant drug-related adverse events occurred. No significant differences were found in GDx ( p = 0.840). Visual evoked potentials (VEP) were significantly prolonged in the amiloride group compared to placebo ( p = 0.004). All other secondary outcome measures showed no significant difference. Baseline analysis of OCT data demonstrated a significant pre-randomisation thinning of ganglion cell layer. CONCLUSION: Amiloride has not demonstrated any neuroprotective benefit within this trial paradigm, but future neuroprotective trials in ON should target the window of opportunity to maximise potential neuroprotective benefit.


Assuntos
Amilorida/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neurite Óptica/tratamento farmacológico , Retina/efeitos dos fármacos , Adulto , Método Duplo-Cego , Potenciais Evocados Visuais/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurite Óptica/patologia , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa