Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 46(2): 340-343, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449023

RESUMO

An increase in the radiation power of terahertz (THz) sources requires the development of new optics working with it. The laser-assisted replication technique is proposed to fabricate the diamond cylindrical diffractive lens with a continuous profile for the THz range. The procedure involves the inverted structuring of a silicon substrate by laser ablation for its further replication to the diamond surface utilizing the chemical vapor deposition process. Testing of the fabricated lens performed with a free-electron laser at the wavelength of 141 µm has demonstrated high diffraction efficiency (95±5%) and a good agreement between the measured and expected intensity distribution in the focal plane.

2.
Opt Express ; 25(4): 3966-3979, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241606

RESUMO

In any pulsed and repetitive laser process a part of the absorbed laser energy is thermalized and stays in the material as residual heat. This residual heat is accumulating from pulse to pulse, continuously increasing the temperature, if the time between two pulses does not allow the material to sufficiently cool down. Controlling this so-called heat accumulation is one of the major challenges for materials processing with high average power pulsed lasers and repetitive processing. Heat accumulation caused by subsequent pulses (HAP) on the same spot and heat accumulation caused by subsequent scans (HAS) over the same spot can significantly reduce process quality, e.g., when the temperature increase caused by heat accumulation exceeds the melting temperature. In both cases, HAS and HAP, it is of particular interest to know the limiting number of pulses or scans after which the heat accumulation temperature exceeds a critical temperature and a pause has to be introduced. Approximation formulas for the case, where the duration of the heat input is short compared to the time between two subsequent heat inputs are derived in this paper, providing analytical scaling laws for the heat accumulation as a function of the processing parameters. The validity of these approximations is confirmed for HAP with an example of surface ablation of CrNi-steel and for HAS with multi-scan cutting of carbon fiber reinforced plastics (CFRP), both with a picosecond laser at an average power of up to 1.1 kW. It is shown that for the important case of 1-dimensional heat flow the limiting number of heat inputs decreases with the inverse of the square of the average laser power.

3.
J Biomed Mater Res A ; 96(2): 384-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21171158

RESUMO

The sheltered transfer and immobilization of rabbit anti-human antiserum immunoglobulin G (IgG) by matrix-assisted pulsed laser evaporation (MAPLE) are reported. The iced targets submitted to laser irradiation consisted of 0.2-2 mg/mL IgG blended or not with lipid (L-α-phosphatidylcholine dipalmitoyl) dissolved in distilled water-based saline buffer. Thin IgG coatings were obtained at room temperature onto glass, fused silica, or silicon substrates. Ten thousand subsequent laser pulses of 0.33, 0.5, or 0.67 J/cm(2) fluence were applied for the synthesis of each sample. Morphology and composition of the thin films were studied by optical, scanning, and atomic force microscopy and Fourier transformed infrared spectrometry. Optical labeling methods such as spectrofluorimetry and fluorescence microscopy were selected to verify the biosensor transduction principle because of their high sensitivity for detecting low amounts of antigen (IgG). Protein immobilization to the substrate surface was demonstrated for all obtained structures after immersion in the donkey anti-rabbit secondary antibody solution. The IgG transfer and immobilization onto substrates were improved by addition of lipid to MAPLE solutions.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Imobilizadas/metabolismo , Imunoglobulina G/metabolismo , Lasers de Excimer , Animais , Humanos , Imunoglobulina G/ultraestrutura , Lipídeos/farmacologia , Microscopia de Força Atômica , Microscopia de Fluorescência , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa