Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(2): 276-297, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37433056

RESUMO

Changes in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here, we developed a genetically encoded Förster resonance energy transfer (FRET)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs). We focused on two CDPKs with distinct Ca2+-sensitivities, highly Ca2+-sensitive Arabidopsis (Arabidopsis thaliana) AtCPK21 and rather Ca2+-insensitive AtCPK23, to report conformational changes accompanying kinase activation. In tobacco (Nicotiana tabacum) pollen tubes, which naturally display coordinated spatial and temporal Ca2+ fluctuations, CPK21-FRET, but not CPK23-FRET, reported oscillatory emission ratio changes mirroring cytosolic Ca2+ changes, pointing to the isoform-specific Ca2+-sensitivity and reversibility of the conformational change. In Arabidopsis guard cells, CPK21-FRET-monitored conformational dynamics suggest that CPK21 serves as a decoder of signal-specific Ca2+ signatures in response to abscisic acid and the flagellin peptide flg22. Based on these data, CDPK-FRET is a powerful approach for tackling real-time live-cell Ca2+ decoding in a multitude of plant developmental and stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Flagelina
2.
New Phytol ; 241(4): 1525-1542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017688

RESUMO

Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.


Assuntos
Células Vegetais , Estômatos de Plantas , Membrana Celular/metabolismo , Transporte de Íons , Homeostase , Concentração de Íons de Hidrogênio , Estômatos de Plantas/metabolismo
3.
New Phytol ; 241(1): 73-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37936524

RESUMO

γ-Aminobutyric acid (GABA) accumulates rapidly under stress via the GABA shunt pathway, which has been implicated in reducing the accumulation of stress-induced reactive oxygen species (ROS) in plants. γ-Aminobutyric acid has been demonstrated to act as a guard-cell signal in Arabidopsis thaliana, modulating stomatal opening. Knockout of the major GABA synthesis enzyme Glutamate Decarboxylase 2 (GAD2) increases the aperture of gad2 mutants, which results in greater stomatal conductance and reduces water-use efficiency compared with wild-type plants. Here, we found that the additional loss of GAD1, GAD4, and GAD5 in gad2 leaves increased GABA deficiency but abolished the more open stomatal pore phenotype of gad2, which we link to increased cytosolic calcium (Ca2+ ) and ROS accumulation in gad1/2/4/5 guard cells. Compared with wild-type and gad2 plants, glutamate was ineffective in closing gad1/2/4/5 stomatal pores, whereas lowering apoplastic calcium, applying ROS inhibitors or complementation with GAD2 reduced gad1/2/4/5 guard-cell ROS, restored the gad2-like greater stomatal apertures of gad1/2/4/5 beyond that of wild-type. We conclude that GADs are important contributors to ROS homeostasis in guard cells likely via a Ca2+ -mediated pathway. As such, this study reveals greater complexity in GABA's role as a guard-cell signal and the interactions it has with other established signals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Estômatos de Plantas , Ácido gama-Aminobutírico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Ácido Abscísico/metabolismo
4.
New Phytol ; 237(1): 217-231, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128659

RESUMO

Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.


Assuntos
Cálcio , Nicotiana , Cálcio/metabolismo , Nicotiana/metabolismo , Cloreto de Sódio/farmacologia , Raízes de Plantas/metabolismo , Folhas de Planta/fisiologia , Sódio/metabolismo , Íons/metabolismo
5.
Plant Physiol ; 187(2): 572-589, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35237820

RESUMO

Microbial rhodopsins have advanced optogenetics since the discovery of channelrhodopsins almost two decades ago. During this time an abundance of microbial rhodopsins has been discovered, engineered, and improved for studies in neuroscience and other animal research fields. Optogenetic applications in plant research, however, lagged largely behind. Starting with light-regulated gene expression, optogenetics has slowly expanded into plant research. The recently established all-trans retinal production in plants now enables the use of many microbial opsins, bringing extra opportunities to plant research. In this review, we summarize the recent advances of rhodopsin-based plant optogenetics and provide a perspective for future use, combined with fluorescent sensors to monitor physiological parameters.


Assuntos
Técnicas Biossensoriais/métodos , Imagem Molecular/métodos , Optogenética , Plantas/genética , Rodopsina/genética , Rodopsinas Microbianas/genética , Corantes Fluorescentes , Fenômenos Fisiológicos Vegetais , Rodopsina/metabolismo , Rodopsinas Microbianas/metabolismo
6.
New Phytol ; 223(3): 1353-1371, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132313

RESUMO

We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth in Arabidopsis thaliana (Col-0). Patch-clamp whole-cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+ ]cyt ). We investigated the pollen-expressed proteins AtSLAH3, AtALMT12, AtTMEM16 and AtCCC as the putative anion transporters responsible for these currents. AtCCC-GFP was observed at the shank and AtSLAH3-GFP at the tip and shank of the PT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip of PTs with an anion vibrating probe were significantly lower in slah3-/- and ccc-/- mutants, but unaffected in almt12-/- and tmem16-/- . We further characterised the effect of pH and GABA by patch clamp. Strong regulation by extracellular pH was observed in the wild-type, but not in tmem16-/- . Our results are compatible with AtTMEM16 functioning as an anion/H+ cotransporter and therefore, as a putative pH sensor. GABA presence: (1) inhibited the overall currents, an effect that is abrogated in the almt12-/- and (2) reduced the current in AtALMT12 transfected COS-7 cells, strongly suggesting the direct interaction of GABA with AtALMT12. Our data show that AtSLAH3 and AtCCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linking PT growth modulation by pH, GABA, and [Ca2+ ]cyt through anionic transporters.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Fenômenos Eletrofisiológicos , Pólen/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ânions , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cloretos/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nitratos/farmacologia , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Simportadores/metabolismo
7.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938800

RESUMO

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Nicotiana/enzimologia , Salinidade , Cloreto de Sódio/farmacologia , Vacúolos/enzimologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Bombas de Próton/metabolismo , Prótons , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
Plant Cell ; 25(11): 4525-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24280384

RESUMO

Apical growth in pollen tubes (PTs) is associated with the presence of tip-focused ion gradients and fluxes, implying polar localization or regulation of the underlying transporters. The molecular identity and regulation of anion transporters in PTs is unknown. Here we report a negative gradient of cytosolic anion concentration focused on the tip, in negative correlation with the cytosolic Ca(2+) concentration. We hypothesized that a possible link between these two ions is based on the presence of Ca(2+)-dependent protein kinases (CPKs). We characterized anion channels and CPK transcripts in PTs and analyzed their localization. Yellow fluorescent protein (YFP) tagging of a homolog of SLOW ANION CHANNEL-ASSOCIATED1 (SLAH3:YFP) was widespread along PTs, but, in accordance with the anion efflux, CPK2/CPK20/CPK17/CPK34:YFP fluorescence was strictly localized at the tip plasma membrane. Expression of SLAH3 with either CPK2 or CPK20 (but not CPK17/CPK34) in Xenopus laevis oocytes elicited S-type anion channel currents. Interaction of SLAH3 with CPK2/CPK20 (but not CPK17/CPK34) was confirmed by Förster-resonance energy transfer fluorescence lifetime microscopy in Arabidopsis thaliana mesophyll protoplasts and bimolecular fluorescence complementation in living PTs. Compared with wild-type PTs, slah3-1 and slah3-2 as well as cpk2-1 cpk20-2 PTs had reduced anion currents. Double mutant cpk2-1 cpk20-2 and slah3-1 PTs had reduced extracellular anion fluxes at the tip. Our studies provide evidence for a Ca(2+)-dependent CPK2/CPK20 regulation of the anion channel SLAH3 to regulate PT growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Animais , Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Citosol/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Canais Iônicos/genética , Células do Mesofilo/metabolismo , Mutação , Oócitos/metabolismo , Plantas Geneticamente Modificadas , Tubo Polínico/metabolismo , Proteínas Quinases/genética , Nicotiana/genética , Nicotiana/metabolismo , Xenopus laevis
9.
Plant J ; 78(1): 94-106, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24506280

RESUMO

Reactive oxygen species (ROS) produced by NAD(P)H oxidases play a central role in plant stress responses and development. To better understand the function of NAD(P)H oxidases in plant development, we characterized the Arabidopsis thaliana NAD(P)H oxidases RBOHH and RBOHJ. Both proteins were specifically expressed in pollen and dynamically targeted to distinct and overlapping plasma membrane domains at the pollen tube tip. Functional loss of RBOHH and RBOHJ in homozygous double mutants resulted in reduced fertility. Analyses of pollen tube growth revealed remarkable differences in growth dynamics between Col-0 and rbohh-1 rbohj-2 pollen tubes. Growth rate oscillations of rbohh-1 rbohj-2 pollen tubes showed strong fluctuations in amplitude and frequency, ultimately leading to pollen tube collapse. Prior to disintegration, rbohh-1 rbohj-2 pollen tubes exhibit high-frequency growth oscillations, with significantly elevated growth rates, suggesting that an increase in the rate of cell-wall exocytosis precedes pollen tube collapse. Time-lapse imaging of exocytic dynamics revealed that NAD(P)H oxidases slow down pollen tube growth to coordinate the rate of cell expansion with the rate of exocytosis, thereby dampening the amplitude of intrinsic growth oscillations. Using the Ca(2+) reporter Yellow Cameleon 3.6, we demonstrate that high-amplitude growth rate oscillations in rbohh-1 rbohj-2 pollen tubes are correlated with growth-dependent Ca(2+) bursts. Electrophysiological experiments involving double mutant pollen tubes and pharmacological treatments also showed that ROS influence K(+) homeostasis. Our results indicate that, by limiting pollen tube growth, ROS produced by NAD(P)H oxidases modulate the amplitude and frequency of pollen tube growth rate oscillations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Exocitose , Homeostase , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Especificidade de Órgãos , Pólen/citologia , Pólen/enzimologia , Pólen/genética , Pólen/fisiologia , Tubo Polínico/citologia , Tubo Polínico/enzimologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Imagem com Lapso de Tempo
10.
Annu Rev Plant Biol ; 74: 313-339, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37216203

RESUMO

Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.


Assuntos
Engenharia Genética , Optogenética , Optogenética/métodos , Células Fotorreceptoras , Biologia
11.
iScience ; 25(4): 104078, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378857

RESUMO

Sensing of external mineral nutrient concentrations is essential for plants to colonize environments with a large spectrum of nutrient availability. Here, we analyzed transporter networks in computational cell biology simulations to understand better the initial steps of this sensing process. The networks analyzed were capable of translating the information of changing external nutrient concentrations into cytosolic H+ and Ca2+ signals, two of the most ubiquitous cellular second messengers. The concept emerging from the computational simulations was confirmed in wet-lab experiments. We document in guard cells that alterations in the external KCl concentration were translated into cytosolic H+ and Ca2+ transients as predicted. We show that transporter networks do not only serve their primary task of transport, but can also take on the role of a receptor without requiring conformational changes of a transporter protein. Such transceptor-like phenomena may be quite common in plants.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37933248

RESUMO

Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.

13.
Membranes (Basel) ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919843

RESUMO

Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted ß-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light.

14.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244145

RESUMO

Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO2 and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl- and NO3 - currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+ As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.

15.
Nat Plants ; 7(2): 144-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594268

RESUMO

While rhodopsin-based optogenetics has revolutionized neuroscience1,2, poor expression of opsins and the absence of the essential cofactor all-trans-retinal has complicated the application of rhodopsins in plants. Here, we demonstrate retinal production in plants and improved rhodopsin targeting for green light manipulation of plant cells using the Guillardia theta light-gated anion channelrhodopsin GtACR13. Green light induces a massive increase in anion permeability and pronounced membrane potential changes when GtACR1 is expressed, enabling non-invasive manipulation of plant growth and leaf development. Using light-driven anion loss, we could mimic drought conditions and bring about leaf wilting despite sufficient water supply. Expressed in pollen tubes, global GtACR1 activation triggers membrane potential depolarizations due to large anion currents. While global illumination was associated with a reversible growth arrest, local GtACR1 activation at the flanks of the apical dome steers growth direction away from the side with increased anion conductance. These results suggest a crucial role of anion permeability for the guidance of pollen tube tip growth. This plant optogenetic approach could be expanded to create an entire pallet of rhodopsin-based tools4, greatly facilitating dissection of plant ion-signalling pathways.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Optogenética/métodos , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Proteobactérias/química , Rodopsinas Microbianas/metabolismo
16.
Curr Biol ; 31(16): 3575-3585.e9, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34233161

RESUMO

Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Inundações , Canais Iônicos , Estresse Fisiológico , Animais , Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Oócitos , Xenopus
17.
J Exp Bot ; 61(2): 537-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19969532

RESUMO

The genome of Arabidopsis thaliana contains six genes, AtPMT1 to AtPMT6 (Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTER 1-6), which form a distinct subfamily within the large family of more than 50 monosaccharide transporter-like (MST-like) genes. So far, only AtPMT5 [formerly named AtPLT5 (At3g18830)] has been characterized and was shown to be a plasma membrane-localized H(+)-symporter with broad substrate specificity. The characterization of AtPMT1 (At2g16120) and AtPMT2 (At2g16130), two other, almost identical, members of this transporter subfamily, are presented here. Expression of the AtPMT1 and AtPMT2 cDNAs in baker's yeast (Saccharomyces cerevisiae) revealed that these proteins catalyse the energy-dependent, high-capacity transport of fructose and xylitol, and the transport of several other compounds with lower rates. Expression of their cRNAs in Xenopus laevis oocytes showed that both proteins are voltage-dependent and catalyse the symport of their substrates with protons. Fusions of AtPMT1 or AtPMT2 with the green fluorescent protein (GFP) localized to Arabidopsis plasma membranes. Analyses of reporter genes performed with AtPMT1 or AtPMT2 promoter sequences showed expression in mature (AtPMT2) or germinating (AtPMT1) pollen grains, as well as in growing pollen tubes, hydathodes, and young xylem cells (both genes). The expression was confirmed with an anti-AtPMT1/AtPMT2 antiserum (alphaAtPMT1/2) raised against peptides conserved in AtPMT1 and AtPMT2. The physiological roles of the proteins are discussed and related to plant cell wall modifications.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Frutose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pólen/metabolismo , Xilema/metabolismo , Xilitol/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Pólen/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Xilema/genética
18.
Plant J ; 55(1): 161-73, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18363788

RESUMO

The plant membrane potential reports on the activity of electrogenic plasma membrane transport processes. The membrane potential is widely used to report for early events associated with changes in light regime, hormone action or pathogen attacks. The membrane potentials of guard cells can be precisely measured with microelectrodes, but this technique is not well suited for rapid screens with large sample numbers. To provide the basis for large-scale membrane potential recordings, we took advantage of voltage-sensitive dyes. Using the fluorescent dyes bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC(4)(3)) and the FLIPR Membrane Potential Assay Kit (FMP) dye we followed changes in the membrane potential in guard cells and vacuoles. Based on the fluorescence of DiBAC(4)(3) a method was established for quantification of the membrane potential in guard cell protoplasts which should be considered as an excellent system for high-throughput screening of plant cells. In the absence of abscisic acid (ABA), one-third of the guard cell protoplast population spontaneously oscillated for periods of 5-6 min. Upon application of ABA the hyperpolarized fraction ( approximately 50%) of the guard cell protoplast population depolarized within a few minutes. Membrane potential oscillations were terminated by ABA. Oscillations and ABA responses were found in cell populations with active anion channels. Thus time- and voltage-dependent anion channels likely represent the ABA-sensitive conductance and part of the membrane potential oscillator. The suitability of membrane potential dyes was tested on vacuoles, too. Dye-based vacuolar membrane polarization was monitored upon ATP exposure. We conclude that voltage-sensitive dyes provide an excellent tool for the study of changes in the membrane potential in vacuole as well as guard cell populations.


Assuntos
Arabidopsis/fisiologia , Barbitúricos/metabolismo , Corantes Fluorescentes/metabolismo , Isoxazóis/metabolismo , Potenciais da Membrana , Vicia faba/fisiologia , Ácido Abscísico/metabolismo , Técnicas de Patch-Clamp , Protoplastos/fisiologia , Vacúolos/fisiologia , Canais de Ânion Dependentes de Voltagem/metabolismo
19.
Methods Mol Biol ; 1076: 481-502, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24108640

RESUMO

This chapter describes the procedure for globally analyzing fluorescence lifetime imaging (FLIM) data for the observation and quantification of Förster resonance energy transfer (FRET) in live plant cells. The procedure is illustrated by means of a case study, for which plant protoplasts were transfected with different visible fluorescent proteins and subsequently imaged using two-photon excitation FLIM. Spatially resolved fluorescence lifetime images were obtained by application of global analysis using the program Glotaran, which is open-source and freely available software. Using this procedure it is possible to extract the fraction and distance of interacting species between, or conformational changes within proteins, from complex experimental FRET-FLIM datasets, even at low signal-to-noise ratios. In addition, the software allows excluding inherently present autofluorescence from the plant cells, which improves the accuracy of the FRET analysis. The results from the case study are presented and interpreted in the context of the current scientific understanding of these biological systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Células Vegetais/ultraestrutura , Proteínas de Fluorescência Verde/química , Imagem Óptica , Protoplastos/ultraestrutura , Razão Sinal-Ruído , Software
20.
Curr Opin Plant Biol ; 14(6): 721-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22000040

RESUMO

We review the recent advances on Ca(2+) in tip-growing cells, with a special focus on pollen tubes. New genes for Ca(2+) pumps, channels and sensing proteins have been recently described, with special emphasis on cyclic nucleotide gated channels (CNGCs) and glutamate receptor-like channels (GLRs). We also review the current state of knowledge in what concerns Ca(2+) sensor and relay proteins, where the knowledge of the cell models is less advanced. While these newly described genes offer promise to a better understanding of the spatial and temporal patterns of Ca(2+) signalling that may be relevant for the formation of the phenotype, we discuss the necessity to investigate further links in the network downstream of the Ca(2+) signature, with a special need for mechanisms of feed-back that might render functional feed-back loops approachable by modelling and genetics. Given the available literature, we conclude on the need to investigate more on the role of two specific classes of proteins, the calcium binding protein kinases (CPKs) and the Calcineurin B-like proteins (CBLs) and their regulatory relationships to ion channels (summarized in Figure 3b).


Assuntos
Cálcio/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Canais de Cálcio/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas do Segundo Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa