RESUMO
We report the first demonstration of a microfluidics-based approach to measure lipids in single living cells using widely available liquid chromatography mass spectrometry (LC-MS) instrumentation. The method enables the rapid sorting of live cells into liquid chambers formed on standard Petri dishes and their subsequent dispensing into vials for analysis using LC-MS. This approach facilitates automated sampling, data acquisition, and analysis and carries the additional advantage of chromatographic separation, aimed at reducing matrix effects present in shotgun lipidomics approaches. We demonstrate that our method detects comparable numbers of features at around 200 lipids in populations of single cells versus established live single-cell capillary sampling methods and with greater throughput, albeit with the loss of spatial resolution. We also show the importance of optimization steps in addressing challenges from lipid contamination, especially in blanks, and demonstrate a 75% increase in the number of lipids identified. This work opens up a novel, accessible, and high-throughput way to obtain single-cell lipid profiles and also serves as an important validation of single-cell lipidomics through the use of different sampling methods.
RESUMO
We report the development and validation of an untargeted single-cell lipidomics method based on microflow chromatography coupled to a data-dependent mass spectrometry method for fragmentation-based identification of lipids. Given the absence of single-cell lipid standards, we show how the methodology should be optimized and validated using a dilute cell extract. The methodology is applied to dilute pancreatic cancer and macrophage cell extracts and standards to demonstrate the sensitivity requirements for confident assignment of lipids and classification of the cell type at the single-cell level. The method is then coupled to a system that can provide automated sampling of live, single cells into capillaries under microscope observation. This workflow retains the spatial information and morphology of cells during sampling and highlights the heterogeneity in lipid profiles observed at the single-cell level. The workflow is applied to show changes in single-cell lipid profiles as a response to oxidative stress, coinciding with expanded lipid droplets. This demonstrates that the workflow is sufficiently sensitive to observing changes in lipid profiles in response to a biological stimulus. Understanding how lipids vary in single cells will inform future research into a multitude of biological processes as lipids play important roles in structural, biophysical, energy storage, and signaling functions.