Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(17): 9930-9947, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107780

RESUMO

Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions. This implies that not all DSBs are equally toxic, and raises the question if the location of a single double-strand break could influence its toxicity. To systematically investigate if DSB-location is a determinant of toxicity we performed a CRISPR/Cas9 screen targeting 6237 single sites in the human genome. Next, we developed a data-driven framework to design CRISPR/Cas9 sgRNA (crRNA) pools targeting specific chromatin features. The chromatin context was defined using ChromHMM states, Lamin-B1 DAM-iD, DNAseI hypersensitivity, and RNA-sequencing data. We computationally designed 6 distinct crRNA pools, each containing 10 crRNAs targeting the same chromatin state. We show that the toxicity of a DSB is highly similar across the different ChromHMM states. Rather, we find that the major determinants of toxicity of a sgRNA are cutting efficiency and off-target effects. Thus, chromatin features have little to no effect on the toxicity of a single CRISPR/Cas9-induced DSB.


Assuntos
Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas , Cromatina/genética , Reparo do DNA , Humanos , Laminas , RNA
2.
Mol Oncol ; 17(7): 1192-1211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195379

RESUMO

Faithful and timely repair of DNA double-strand breaks (DSBs) is fundamental for the maintenance of genomic integrity. Here, we demonstrate that the meiotic recombination co-factor MND1 facilitates the repair of DSBs in somatic cells. We show that MND1 localizes to DSBs, where it stimulates DNA repair through homologous recombination (HR). Importantly, MND1 is not involved in the response to replication-associated DSBs, implying that it is dispensable for HR-mediated repair of one-ended DSBs. Instead, we find that MND1 specifically plays a role in the response to two-ended DSBs that are induced by irradiation (IR) or various chemotherapeutic drugs. Surprisingly, we find that MND1 is specifically active in G2 phase, whereas it only marginally affects repair during S phase. MND1 localization to DSBs is dependent on resection of the DNA ends and seemingly occurs through direct binding of MND1 to RAD51-coated ssDNA. Importantly, the lack of MND1-driven HR repair directly potentiates the toxicity of IR-induced damage, which could open new possibilities for therapeutic intervention, specifically in HR-proficient tumors.


Assuntos
Reparo do DNA , Recombinação Homóloga , Humanos , Reparo do DNA/genética , Recombinação Homóloga/genética , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Fase S , Proteínas de Ciclo Celular/metabolismo
3.
Open Biol ; 9(9): 190156, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31506018

RESUMO

The response to DNA replication stress in eukaryotes is under the control of the ataxia-telangiectasia and Rad3-related (ATR) kinase. ATR responds to single-stranded (ss) DNA to stabilize distressed DNA replication forks, modulate DNA replication firing and prevent cells with damaged DNA or incomplete DNA replication from entering into mitosis. Furthermore, inhibitors of ATR are currently in clinical development either as monotherapies or in combination with agents that perturb DNA replication. To gain a genetic view of the cellular pathways requiring ATR kinase function, we mapped genes whose mutation causes hypersensitivity to ATR inhibitors with genome-scale CRISPR/Cas9 screens. We delineate a consensus set of 117 genes enriched in DNA replication, DNA repair and cell cycle regulators that promote survival when ATR kinase activity is suppressed. We validate 14 genes from this set and report genes not previously described to modulate response to ATR inhibitors. In particular we found that the loss of the POLE3/POLE4 proteins, which are DNA polymerase ε accessory subunits, results in marked hypersensitivity to ATR inhibition. We anticipate that this 117-gene set will be useful for the identification of genes involved in the regulation of genome integrity and the characterization of new biological processes involving ATR, and may reveal biomarkers of ATR inhibitor response in the clinic.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Variação Genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Marcação de Genes , Genes Reporter , Estudos de Associação Genética , Humanos , Interferência de RNA , RNA Guia de Cinetoplastídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa