Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Hum Mutat ; 39(5): 653-665, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29363216

RESUMO

We aimed to determine the diagnostic yield of a targeted-exome panel in a cohort of 74 Dutch primary ciliary dyskinesia (PCD) patients. The panel consisted of 26 PCD-related and 284 candidate genes. To prioritize PCD candidate genes, we investigated the transcriptome of human airway cells of 12 healthy volunteers during in vitro ciliogenesis and hypothesized that PCD-related genes show significant upregulation. We compared gene expression in epithelial precursor cells grown as collagen monolayer and ciliated cells grown in suspension by RNA sequencing. All genes reported as PCD causative, except NME8, showed significant upregulation during in vitro ciliogenesis. We observed 67.6% diagnostic yield when testing the targeted-exome panel in our cohort. There was relatively high percentage of DNAI and HYDIN mutations compared to other countries. The latter may be due to our solution for the problem of the confounding HYDIN2 pseudogene. Candidate genes included two recently published PCD-related genes DNAJB13 and PIH1D3; identification of the latter was a direct result of this study. In conclusion, we demonstrate 67.6% diagnostic yield by targeted exome sequencing in a Dutch PCD population and present a highly sensitive and moderately specific approach for identification of PCD-related genes, based on significant upregulation during in vitro ciliogenesis.


Assuntos
Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Adulto , Alelos , Exoma/genética , Regulação da Expressão Gênica , Humanos , Mutação/genética , Análise de Sequência de RNA
2.
Radiology ; 288(2): 506-515, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29714679

RESUMO

Purpose To identify associations between magnetic resonance (MR) imaging features and gene expression in retinoblastoma. Materials and Methods A retinoblastoma MR imaging atlas was validated by using anonymized MR images from referral centers in Essen, Germany, and Paris, France. Images were from 39 patients with retinoblastoma (16 male and 18 female patients [the sex in five patients was unknown]; age range, 5-90 months; inclusion criterion: pretreatment MR imaging). This atlas was used to compare MR imaging features with genome-wide messenger RNA (mRNA) expression data from 60 consecutive patients obtained from 1995 to 2012 (35 male patients [58%]; age range, 2-69 months; inclusion criteria: pretreatment MR imaging, genome-wide mRNA expression data available). Imaging pathway associations were analyzed by means of gene enrichment. In addition, imaging features were compared with a predefined gene expression signature of photoreceptorness. Statistical analysis was performed with generalized linear modeling of radiology traits on normalized log2-transformed expression values. P values were corrected for multiple hypothesis testing. Results Radiogenomic analysis revealed 1336 differentially expressed genes for qualitative imaging features (threshold P = .05 after multiple hypothesis correction). Loss of photoreceptorness gene expression correlated with advanced stage imaging features, including multiple lesions (P = .03) and greater eye size (P < .001). The number of lesions on MR images was associated with expression of MYCN (P = .04). A newly defined radiophenotype of diffuse-growing, plaque-shaped, multifocal tumors displayed overexpression of SERTAD3 (P = .003, P = .049, and P = .06, respectively), a protein that stimulates cell growth by activating the E2F network. Conclusion Radiogenomic biomarkers can potentially help predict molecular features, such as photoreceptorness loss, that indicate tumor progression. Results imply a possible role for radiogenomics in future staging and treatment decision making in retinoblastoma.


Assuntos
Genes do Retinoblastoma/genética , Imageamento por Ressonância Magnética/métodos , Neoplasias da Retina/diagnóstico por imagem , Retinoblastoma/diagnóstico por imagem , Transcriptoma/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Retina/diagnóstico por imagem , Neoplasias da Retina/genética , Retinoblastoma/genética
3.
Genes Chromosomes Cancer ; 56(3): 231-242, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27750399

RESUMO

Several murine retinoblastoma models have been generated by deleting the genes encoding for retinoblastoma susceptibility protein pRb and one of its family members p107 or p130. In Rb-/- p107-/- retinoblastomas, somatic copy number alterations (SCNAs) like Mdm2 amplification or Cdkn2a deletion targeting the p53-pathway occur, which is uncommon for human retinoblastoma. In our study, we determined SCNAs in retinoblastomas developing in Rb-/- p130-/- mice and compared this to murine Rb-/- p107-/- tumors and human tumors. Chimeric mice were made by injection of 129/Ola-derived Rb-/- p130-/- embryonic stem cells into wild type C57BL/6 blastocysts. SCNAs of retinoblastoma samples were determined by low-coverage (∼0.5×) whole genome sequencing. In Rb-/- p130-/- tumors, SCNAs included gain of chromosomes 1 (3/23 tumors), 8 (1/23 tumors), 10 (1/23 tumors), 11 (2/23 tumors), and 12 (4/23 tumors), which could be mapped to frequently altered chromosomes in human retinoblastomas. While the altered chromosomes in Rb-/- p130-/- tumors were similar to those in Rb-/- p107-/- tumors, the alteration frequencies were much lower in Rb-/- p130-/- tumors. Most of the Rb-/- p130-/- tumors (16/23 tumors, 70%) were devoid of SCNAs, in strong contrast to Rb-/- p107-/- tumors, which were never (0/15 tumors) SCNA-devoid. Similarly, to human retinoblastoma, increased age at diagnosis significantly correlated with increased SCNA frequencies. Additionally, focal loss of Cdh11 was observed in one Rb-/- p130-/- tumor, which enforces studies in human retinoblastoma that identified CDH11 as a retinoblastoma suppressor. Moreover, based on a comparison of genes altered in human and murine retinoblastoma, we suggest exploring the role of HMGA1 and SRSF3 in retinoblastoma development. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA/genética , Proteína p107 Retinoblastoma-Like/fisiologia , Proteína p130 Retinoblastoma-Like/fisiologia , Retinoblastoma/genética , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
BMC Cancer ; 15: 877, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553136

RESUMO

BACKGROUND: CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. METHODS: We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. RESULTS: High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. CONCLUSIONS: In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss of chromosomal arm 1p in a subset of tumors, which might be involved in CHEK2 tumorigenesis. This difference in CNAs profiles might be explained by the need for BRCA1-deficient tumor cells to acquire survival factors, by for example specific copy number aberrations, to expand. Such factors may not be needed for breast tumors with a defect in a non-essential gene such as CHEK2.


Assuntos
Neoplasias da Mama/genética , Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Idoso , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA , Feminino , Genômica , Humanos , Perda de Heterozigosidade/genética , Pessoa de Meia-Idade , Países Baixos , Deleção de Sequência
5.
Sci Rep ; 12(1): 14686, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038602

RESUMO

Inherited bone disorders account for about 10% of documented Mendelian disorders and are associated with high financial burden. Their study requires osteoblasts which play a critical role in regulating the development and maintenance of bone tissue. However, bone tissue is not always available from patients. We developed a highly efficient platelet lysate-based approach to directly transdifferentiate skin-derived human fibroblasts to osteoblast-like cells. We extensively characterized our in vitro model by examining the expression of osteoblast-specific markers during the transdifferentiation process both at the mRNA and protein level. The transdifferentiated osteoblast-like cells showed significantly increased expression of a panel of osteogenic markers. Mineral deposition and ALP activity were also shown, confirming their osteogenic properties. RNA-seq analysis allowed the global study of changes in the transcriptome of the transdifferentiated cells. The transdifferentiated cells clustered separately from the primary fibroblasts with regard to the significantly upregulated genes indicating a distinct transcriptome profile; transdifferentiated osteoblasts also showed significant enrichment in gene expression related to skeletal development and bone mineralization. Our presented in vitro model may potentially contribute to the prospect of studying osteoblast-dependent disorders in patient-derived cells.


Assuntos
Transdiferenciação Celular , Osteoblastos , Calcificação Fisiológica/genética , Diferenciação Celular/genética , Transdiferenciação Celular/genética , Fibroblastos , Humanos , Osteoblastos/metabolismo , Osteogênese/genética
6.
Cancers (Basel) ; 12(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204435

RESUMO

Glucocorticoid (GC) resistance is a crucial determinant of inferior response to chemotherapy in pediatric acute lymphoblastic leukemia (ALL); however, molecular mechanisms underlying this phenomenon are poorly understood. Deregulated splicing is a common feature of many cancers, which impacts drug response and constitutes an attractive therapeutic target. Therefore, the aim of the current study was to characterize global splicing profiles associated with GC resistance and determine whether splicing modulation could serve as a novel therapeutic option for GC-resistant patients. To this end, 38 primary ALL samples were profiled using RNA-seq-based differential splicing analysis. The impact of splicing modulators was investigated in GC-resistant leukemia cell lines and primary leukemic specimens. Our findings revealed, for the first time, markedly distinct splicing landscapes in ALL samples of B-cell precursor (BCP)-ALL and T-ALL lineages. Differential splicing events associated with GC resistance were involved in RNA processing, a direct response to GCs, survival signaling, apoptosis, cell cycle regulation and energy metabolism. Furthermore, our analyses showed that GC-resistant ALL cell lines and primary samples are sensitive to splicing modulation, alone and in combination with GC. Together, these findings suggest that aberrant splicing is associated with GC resistance and splicing modulators deserve further interest as a novel treatment option for GC-resistant patients.

7.
Mol Cancer Res ; 16(11): 1701-1712, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30061186

RESUMO

Tumor-derived cell-free DNA (cfDNA) has biomarker potential; therefore, this study aimed to identify cfDNA in the aqueous humor (AH) of retinoblastoma eyes and correlate somatic chromosomal copy-number alterations (SCNA) with clinical outcomes, specifically eye salvage. AH was extracted via paracentesis during intravitreal injection of chemotherapy or enucleation. Shallow whole-genome sequencing was performed using isolated cfDNA to assess for highly recurrent SCNAs in retinoblastoma including gain of 1q, 2p, 6p, loss of 13q, 16q, and focal MYCN amplification. Sixty-three clinical specimens of AH from 29 eyes of 26 patients were evaluated; 13 eyes were enucleated and 16 were salvaged (e.g., saved). The presence of detectable SCNAs was 92% in enucleated eyes versus 38% in salvaged eyes (P = 0.006). Gain of chromosome 6p was the most common SCNA found in 77% of enucleated eyes, compared with 25% of salvaged eyes (P = 0.0092), and associated with a 10-fold increased odds of enucleation (OR, 10; 95% CI, 1.8-55.6). The median amplitude of 6p gain was 1.47 in enucleated versus 1.07 in salvaged eyes (P = 0.001). The presence of AH SCNAs was correlated retrospectively with eye salvage. The probability of ocular salvage was higher in eyes without detectable SCNAs in the AH (P = 0.0028), specifically 6p gain. This is the first study to correlate clinical outcomes with SCNAs in the AH from retinoblastoma eyes, as such these findings indicate that 6p gain in the aqueous humor is a potential prognostic biomarker for poor clinical response to therapy.Implications: The correlation of clinical outcomes and SCNAs in the AH identified in the current study requires prospective studies to validate these finding before SCNAs, like 6p gain, can be used to predict clinical outcomes at diagnosis. Mol Cancer Res; 16(11); 1701-12. ©2018 AACR.


Assuntos
Humor Aquoso/metabolismo , Ácidos Nucleicos Livres/genética , Enucleação Ocular/métodos , Neoplasias da Retina/genética , Retinoblastoma/genética , Retinoblastoma/cirurgia , Terapia de Salvação/métodos , Adolescente , Adulto , Humor Aquoso/citologia , Biópsia , Criança , Pré-Escolar , DNA de Neoplasias/genética , Feminino , Genômica/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neoplasias da Retina/patologia , Neoplasias da Retina/cirurgia , Retinoblastoma/patologia , Adulto Jovem
8.
Oncotarget ; 9(28): 20134-20155, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29732009

RESUMO

With targeted treatments playing an increasing role in oncology, the need arises for fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can be performed repeatedly for treatment monitoring, and can be performed in malignancies for which biopsy is not available. In this systematic review of 187 included articles, we compiled a database of radiogenomic associations and unraveled networks of imaging groups and gene pathways oncology-wide. Results indicated that ill-defined tumor margins and tumor heterogeneity can potentially be used as imaging biomarkers for 1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated with treatment-informing traits including EGFR-mutations and ALK-rearrangements. Oncology-wide gene pathway analysis revealed an association between contrast enhancement (imaging) and the targetable VEGF-signalling pathway. Although the need of independent validation remains a concern, radiogenomic biomarkers showed potential for prognosis prediction and targeted treatment selection. Quantitative imaging enhanced the potential of multiparametric radiogenomic models. A wealth of data has been compiled for guiding future research towards robust non-invasive genomic profiling.

9.
Cancer Cell ; 32(2): 238-252.e9, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810146

RESUMO

Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83-0.95; p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources.


Assuntos
Algoritmos , Inteligência Artificial , Plaquetas/fisiologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Diagnóstico por Computador/métodos , Neoplasias Pulmonares/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/sangue , Inflamação/diagnóstico , Inflamação/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Máquina de Vetores de Suporte
10.
J Vis Exp ; (118)2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-28060337

RESUMO

Drug resistance remains a major problem in the treatment of cancer for both hematological malignancies and solid tumors. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by well-known genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) modifications, drug resistance mechanisms might also be regulated by splicing aberrations. This is a rapidly growing field of investigation that deserves future attention in order to plan more effective therapeutic approaches. The protocol described in this paper is aimed at investigating the impact of aberrant splicing on drug resistance in solid tumors and hematological malignancies. To this goal, we analyzed the transcriptomic profiles of several in vitro models through RNA-seq and established a qRT-PCR based method to validate candidate genes. In particular, we evaluated the differential splicing of DDX5 and PKM transcripts. The aberrant splicing detected by the computational tool MATS was validated in leukemic cells, showing that different DDX5 splice variants are expressed in the parental vs. resistant cells. In these cells, we also observed a higher PKM2/PKM1 ratio, which was not detected in the Panc-1 gemcitabine-resistant counterpart compared to parental Panc-1 cells, suggesting a different mechanism of drug-resistance induced by gemcitabine exposure.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Proteínas de Transporte/genética , RNA Helicases DEAD-box/genética , Metilação de DNA , Humanos , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , RNA , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
11.
PLoS One ; 11(4): e0153323, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27115612

RESUMO

BACKGROUND: While RB1 loss initiates retinoblastoma development, additional somatic copy number alterations (SCNAs) can drive tumor progression. Although SCNAs have been identified with good concordance between studies at a cytoband resolution, accurate identification of single genes for all recurrent SCNAs is still challenging. This study presents a comprehensive meta-analysis of genome-wide SCNAs integrated with gene expression profiling data, narrowing down the list of plausible retinoblastoma driver genes. METHODS: We performed SCNA profiling of 45 primary retinoblastoma samples and eight retinoblastoma cell lines by high-resolution microarrays. We combined our data with genomic, clinical and histopathological data of ten published genome-wide SCNA studies, which strongly enhanced the power of our analyses (N = 310). RESULTS: Comprehensive recurrence analysis of SCNAs in all studies integrated with gene expression data allowed us to reduce candidate gene lists for 1q, 2p, 6p, 7q and 13q to a limited gene set. Besides the well-established driver genes RB1 (13q-loss) and MYCN (2p-gain) we identified CRB1 and NEK7 (1q-gain), SOX4 (6p-gain) and NUP205 (7q-gain) as novel retinoblastoma driver candidates. Depending on the sample subset and algorithms used, alternative candidates were identified including MIR181 (1q-gain) and DEK (6p gain). Remarkably, our study showed that copy number gains rarely exceeded change of one copy, even in pure tumor samples with 100% homozygosity at the RB1 locus (N = 34), which is indicative for intra-tumor heterogeneity. In addition, profound between-tumor variability was observed that was associated with age at diagnosis and differentiation grades. INTERPRETATION: Since focal alterations at commonly altered chromosome regions were rare except for 2p24.3 (MYCN), further functional validation of the oncogenic potential of the described candidate genes is now required. For further investigations, our study provides a refined and revised set of candidate retinoblastoma driver genes.


Assuntos
Dosagem de Genes , Neoplasias da Retina/genética , Retinoblastoma/genética , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética
12.
Sci Rep ; 6: 25264, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126562

RESUMO

Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control.


Assuntos
Dosagem de Genes , Mutação , Proteínas de Ligação a Retinoblastoma/genética , Retinoblastoma/patologia , Ubiquitina-Proteína Ligases/genética , Humanos , Análise de Sequência de DNA
13.
Cancer Res ; 75(17): 3543-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26122845

RESUMO

Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Instabilidade Cromossômica/genética , Anemia de Fanconi/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cromátides/genética , Dano ao DNA/genética , Reparo do DNA/genética , Anemia de Fanconi/patologia , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Mutação , Estadiamento de Neoplasias , Troca de Cromátide Irmã , Carcinoma de Células Escamosas de Cabeça e Pescoço
14.
EBioMedicine ; 2(7): 660-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26288838

RESUMO

BACKGROUND: Retinoblastoma is a pediatric eye cancer associated with RB1 loss or MYCN amplification (RB1 (+/+) MYCN(A) ). There are controversies concerning the existence of molecular subtypes within RB1(-/-) retinoblastoma. To test whether these molecular subtypes exist, we performed molecular profiling. METHODS: Genome-wide mRNA expression profiling was performed on 76 primary human retinoblastomas. Expression profiling was complemented by genome-wide DNA profiling and clinical, histopathological, and ex vivo drug sensitivity data. FINDINGS: RNA and DNA profiling identified major variability between retinoblastomas. While gene expression differences between RB1 (+/+) MYCN(A) and RB1(-/-) tumors seemed more dichotomous, differences within the RB1(-/-) tumors were gradual. Tumors with high expression of a photoreceptor gene signature were highly differentiated, smaller in volume and diagnosed at younger age compared with tumors with low photoreceptor signature expression. Tumors with lower photoreceptor expression showed increased expression of genes involved in M-phase and mRNA and ribosome synthesis and increased frequencies of somatic copy number alterations. INTERPRETATION: Molecular, clinical and histopathological differences between RB1(-/-) tumors are best explained by tumor progression, reflected by a gradual loss of differentiation and photoreceptor expression signature. Since copy number alterations were more frequent in tumors with less photoreceptorness, genomic alterations might be drivers of tumor progression. RESEARCH IN CONTEXT: Retinoblastoma is an ocular childhood cancer commonly caused by mutations in the RB1 gene. In order to determine optimal treatment, tumor subtyping is considered critically important. However, except for very rare retinoblastomas without an RB1 mutation, there are controversies as to whether subtypes of retinoblastoma do exist. Our study shows that retinoblastomas are highly diverse but rather than reflecting distinct tumor types with a different etiology, our data suggests that this diversity is a result of tumor progression driven by cumulative genetic alterations. Therefore, retinoblastomas should not be categorized in distinct subtypes, but be described according to their stage of progression.


Assuntos
Progressão da Doença , Genoma Humano , Células Fotorreceptoras de Vertebrados/metabolismo , Retinoblastoma/genética , Pré-Escolar , Análise por Conglomerados , Variações do Número de Cópias de DNA/genética , Dactinomicina/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Lactente , Cariotipagem , Masculino , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Retinoblastoma/patologia
15.
Cancer Cell ; 28(5): 666-676, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26525104

RESUMO

Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies".


Assuntos
Biomarcadores Tumorais/genética , Plaquetas/metabolismo , Neoplasias/genética , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Classe I de Fosfatidilinositol 3-Quinases , Receptores ErbB/genética , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/sangue , Neoplasias/diagnóstico , Patologia Molecular/métodos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor ErbB-2/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de RNA/métodos , Máquina de Vetores de Suporte , Adulto Jovem
16.
Mol Oncol ; 9(4): 877-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616998

RESUMO

INTRODUCTION: BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. METHODS: For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n = 27) were compared with basal-like familial BRCAX (non-BRCA1/2/CHEK2*1100delC) tumors (n = 14) in a familial cohort of 120 breast carcinomas. RESULTS: Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identified varying amounts of tumor infiltrating lymphocytes (TILs) as a major cause for this heterogeneity. Indeed, selecting tumors with relative low amounts of TILs, resulted in the identification of three known but also five previously unrecognized BRCA1-associated copy number aberrations. Moreover, these aberrations occurred with high frequencies in the BRCA1-mutated tumor samples. Using these regions it was possible to discriminate BRCA1-mutated from BRCAX breast carcinomas, and they were validated in two independent cohorts. To further substantiate our findings, we used flow cytometry to isolate cancer cells from formalin-fixed, paraffin-embedded, BRCA1-mutated triple negative breast carcinomas with estimated TIL percentages of 40% and higher. Genomic profiles of sorted and unsorted fractions were compared by shallow whole genome sequencing and confirm our findings. CONCLUSION: This study shows that genomic profiling of in particular basal-like, and thus BRCA1-mutated, breast carcinomas is severely affected by the presence of high numbers of TILs. Previous reports on genomic profiling of BRCA1-mutated breast carcinomas have largely neglected this. Therefore, our findings have direct consequences on the interpretation of published genomic data. Also, these findings could prove valuable in light of currently used genomic tools for assessing BRCA1-involvement in breast cancer patients and pathogenicity assessment of BRCA1 variants of unknown significance. The BRCA1-associated genomic aberrations identified in this study provide possible leads to a better understanding of BRCA1-associated oncogenesis.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linfócitos do Interstício Tumoral/imunologia , Mutação/genética , Análise por Conglomerados , Variações do Número de Cópias de DNA/genética , Feminino , Citometria de Fluxo , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
17.
Springerplus ; 3: 381, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161863

RESUMO

Fanconi anemia (FA) is a genetically heterogeneous syndrome associated with increased cancer predisposition. The underlying genes govern the FA pathway which functions to protect the genome during the S-phase of the cell cycle. While upregulation of FA genes has been linked to chemotherapy resistance, little is known about their regulation in response to proliferative stimuli. The purpose of this study was to examine how FA genes are regulated, especially in relation to the cell cycle, in order to reveal their possible participation in biochemical networks. Expression of 14 FA genes was monitored in two human cell-cycle models and in two RB1/E2F pathway-associated primary cancers, retinoblastoma and basal breast cancer. In silico studies were performed to further evaluate coregulation and identify connected networks and diseases. Only FANCA was consistently induced over 2-fold; FANCF failed to exhibit any regulatory fluctuations. Two tools exploiting public data sets indicated coregulation of FANCA with BRCA1. Upregulation of FANCA and BRCA1 correlated with upregulation of E2F3. Genes coregulated with both FANCA and BRCA1 were enriched for MeSH-Term id(s) genomic instability, microcephaly, and Bloom syndrome, and enriched for the cellular component centrosome. The regulation of FA genes appears highly divergent. In RB1-linked tumors, upregulation of FA network genes was associated with reduced expression of FANCF. FANCA and BRCA1 may jointly act in a subnetwork - supporting vital function(s) at the subcellular level (centrosome) as well as at the level of embryonic development (mechanisms controlling head circumference).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa