RESUMO
PURPOSE: Mokken scale analysis (MSA) is an attractive scaling procedure for ordinal data. MSA is frequently used in health-related quality of life research. Two of MSA's prime features are the scalability coefficients and the automated item selection procedure (AISP). The AISP partitions a (large) set of items into scales based on the observed item scores; the resulting scales can be used as measurement instruments. There exist two issues in MSA: First, point estimates, standard errors, and test statistics for scalability coefficients are inappropriate for clustered item scores, which are omnipresent in quality of life research data. Second, the AISP insufficiently takes sampling fluctuation of Mokken's scalability coefficients into account. METHODS: We solved both issues by providing point estimates and standard errors for the scalability coefficients for clustered data and by implementing a Wald-based significance test in the AISP algorithm, resulting in a test-guided AISP (T-AISP), that is available for both nonclustered and clustered test scores. RESULTS: We integrated the T-AISP into a two-step, test-guided MSA for scale construction, to guide the analysis for nonclustered and clustered data. The first step is performing a T-AISP and select the final scale(s). For clustered data, within-group dependency is investigated on the final scale(s). In the second step, the strength of the scale(s) is determined and further analyses are performed. The procedure was demonstrated on clustered item scores obtained from administering a questionnaire on quality of life in schools to 639 students nested in 30 classrooms. CONCLUSIONS: We developed a two-step, test-guided MSA for scale construction that takes into account sample fluctuation of all scalability coefficients and that can be applied to item scores obtained by a nonclustered or clustered sampling design.
Assuntos
Qualidade de Vida , Projetos de Pesquisa , Algoritmos , Humanos , Psicometria , Qualidade de Vida/psicologia , Reprodutibilidade dos Testes , Inquéritos e QuestionáriosRESUMO
Categorical marginal models (CMMs) are flexible tools for modelling dependent or clustered categorical data, when the dependencies themselves are not of interest. A major limitation of maximum likelihood (ML) estimation of CMMs is that the size of the contingency table increases exponentially with the number of variables, so even for a moderate number of variables, say between 10 and 20, ML estimation can become computationally infeasible. An alternative method, which retains the optimal asymptotic efficiency of ML, is maximum empirical likelihood (MEL) estimation. However, we show that MEL tends to break down for large, sparse contingency tables. As a solution, we propose a new method, which we call maximum augmented empirical likelihood (MAEL) estimation and which involves augmentation of the empirical likelihood support with a number of well-chosen cells. Simulation results show good finite sample performance for very large contingency tables.
Assuntos
Funções Verossimilhança , Psicometria , Simulação por ComputadorRESUMO
For the construction of tests and questionnaires that require multiple raters (e.g., a child behaviour checklist completed by both parents) a novel ordinal scaling technique is currently being further developed, called two-level Mokken scale analysis. The technique uses within-rater and between-rater coefficients to assess the scalability of the test. These coefficients are generalizations of Mokken's scalability coefficients. In this paper we derived standard errors for the two-level coefficients and for their ratios. The coefficients, the estimates, the estimated standard errors and the software implementation are discussed and illustrated using a real-data example, and a small-scale simulation study demonstrates the accuracy of the estimates.
Assuntos
Modelos Estatísticos , Psicometria/métodos , Criança , Comportamento Infantil , Simulação por Computador , Humanos , Probabilidade , Software , Estatísticas não Paramétricas , Inquéritos e Questionários/estatística & dados numéricosRESUMO
Two-level Mokken scale analysis is a generalization of Mokken scale analysis for multi-rater data. The bias of estimated scalability coefficients for two-level Mokken scale analysis, the bias of their estimated standard errors, and the coverage of the confidence intervals has been investigated, under various testing conditions. It was found that the estimated scalability coefficients were unbiased in all tested conditions. For estimating standard errors, the delta method and the cluster bootstrap were compared. The cluster bootstrap structurally underestimated the standard errors of the scalability coefficients, with low coverage values. Except for unequal numbers of raters across subjects and small sets of items, the delta method standard error estimates had negligible bias and good coverage. Post hoc simulations showed that the cluster bootstrap does not correctly reproduce the sampling distribution of the scalability coefficients, and an adapted procedure was suggested. In addition, the delta method standard errors can be slightly improved if the harmonic mean is used for unequal numbers of raters per subject rather than the arithmetic mean.