RESUMO
The giant 2011 Tohoku-oki earthquake has been inferred to remobilise fine-grained, young surface sediment enriched in organic matter from the slope into the >7 km deep Japan Trench. Yet, this hypothesis and assessment of its significance for the carbon cycle has been hindered by limited data density and resolution in the hadal zone. Here we combine new high-resolution bathymetry data with sub-bottom profiler images and sediment cores taken during 2012-2016 in order to map for the first time the spatial extent of the earthquake-triggered event deposit along the hadal Japan Trench. We quantify a sediment volume of ~0.2 km3 deposited from spatially-widespread remobilisation of young surficial seafloor slope sediments triggered by the 2011 earthquake and its aftershock sequence. The mapped volume and organic carbon content in sediment cores encompassing the 2011 event reveals that this single tectonic event delivered >1 Tg of organic carbon to the hadal trench. This carbon supply is comparable to high carbon fluxes described for other Earth system processes, shedding new light on the impact of large earthquakes on long-term carbon cycling in the deep-sea.
RESUMO
The correlation between growth and turgor-induced elastic expansion was studied in hypocotyls of sunflower (Helianthus annuus) seedlings under various growth conditions. Turgor-induced elastic cell wall strain was greater in hypocotyls of faster growing seedlings, i.e. in etiolated versus light-grown ones. It also was higher in rapidly growing young seedlings as compared with nongrowing mature ones. However, analysis of the spatial distribution of elastic strain and growth demonstrated that their correspondence was only apparent. Profiles of elastic strain declined steadily from the top of the hypocotyls toward the basis, whereas the profiles of relative elemental growth rate along the hypocotyls showed maxima within the growing zones. In contrast to earlier hypotheses, we conclude that turgor-induced elastic cell wall strain and growth do not correlate precisely in growing hypocotyls.