Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Transplant ; 29: 963689720920275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32314612

RESUMO

The spastic Han Wistar (sHW) rat serves as a model for human ataxia presenting symptoms of motor deterioration, weight loss, shortened lifespan, and Purkinje neuron loss. Past studies revealed that human neural progenitor cells (NPCs) improved ataxic symptoms at 20 d posttransplantation in sHW rats. In this study, we investigated the fate and longer-term effectiveness of these transplanted NPCs. Rats were placed into four treatment groups: an untreated normal control group (n = 10), an untreated mutant rat control (n = 10), a mutant group that received an injection of dead NPCs (n = 9), and a mutant group that received live NPCs (n = 10). Bilateral cerebellar injections containing 500,000 of either live or dead NPCs were performed on mutant sHW rats at 40 d of age. Motor activity for all mutant rats started to decline in open field testing around day 35. However, at day 45, the live NPC-treated mutants exhibited significant improvements in open field activity. Similar improvements were observed during rotarod testing and weight gain through the completion of the experiments (100 d). Immunohistochemistry revealed few surviving human NPCs in the cerebella of 80- and 100-d-old NPC-treated mutants; while cresyl violet staining revealed that live NPC-treated mutants had significantly more surviving Purkinje neurons compared to mutants that were untreated or received dead NPCs. Direct stereotactic implantation of NPCs alleviated the symptoms of ataxia, acting as a neuroprotectant, supporting future clinical applications of these NPCs in the areas of ataxia as well as other neurodegenerative diseases.


Assuntos
Ataxia/genética , Músculo Esquelético/fisiopatologia , Doenças Neurodegenerativas/genética , Células-Tronco/metabolismo , Animais , Ataxia/patologia , Modelos Animais de Doenças , Humanos , Longevidade , Masculino , Doenças Neurodegenerativas/patologia , Ratos , Ratos Wistar
2.
Cell Transplant ; 26(2): 259-269, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27938495

RESUMO

An emerging avenue for recalcitrant neurodegenerative disease treatment is neural progenitor cell (NPC) transplantation. In this study, we investigated the effectiveness of two different delivery routes of human-derived NPC inoculation: injection into the common carotid artery or unilateral stereotactic implantation into the degenerating cerebellum and hippocampus of spastic Han-Wistar (sHW) rats, a model of ataxia. At 30 days of age, sHW mutants were implanted with osmotic pumps preloaded with cyclosporine. Ten days after pump implantation, the animals were given either 3,000,000 live human-derived NPCs (hNPCs; n = 12) or 3,000,000 dead NPCs (dNPCs; n = 12) injected into the common carotid artery, or were given two unilateral implantations of 500,000 hNPCs into the cerebellum and 500,000 hNPCs into the hippocampus of each sHW rat (n = 12) or 500,000 dNPCs by unilateral implantation into the cerebellum and hippocampus (n = 12). We also compared treated sHW rats to untreated sHW rats: normal rats (n = 12) and sibling sHW rats (n = 12). Motor activity and animal weights were monitored every 5 days to ascertain effectiveness of the two types of delivery methods compared to the untreated mutant and normal animals. Mutant rats with hNPC implantations, but not dNPC or carotid artery injections, showed significant deceleration of motor deterioration (p < 0.05). These mutants with hNPC implantations also retained weight longer than dNPC mutants did (p < 0.05). At the end of the experiment, animals were sacrificed for histological evaluation. Using fluorescent markers (Qtracker) incorporated into the hNPC prior to implantation and human nuclear immunostaining, we observed few hNPCs in the brains of carotid artery-injected mutants. However, significant numbers of surviving hNPCs were seen using these techniques in mutant cerebellums and hippocampi implanted with hNPC. Our results show that direct implantation of hNPCs reduced ataxic symptoms in the sHW rat, demonstrating that stereotactic route of stem cell delivery correlates to improved clinical outcomes.


Assuntos
Ataxia/terapia , Células-Tronco Neurais/citologia , Transplante de Células-Tronco/métodos , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/terapia , Ratos , Ratos Wistar
3.
Stem Cell Res Ther ; 2(1): 4, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21272343

RESUMO

INTRODUCTION: Tendon injury is a common problem in athletes, with poor tissue regeneration and a high rate of re-injury. Stem cell therapy is an attractive treatment modality as it may induce tissue regeneration rather than tissue repair. Currently, there are no reports on the use of pluripotent cells in a large animal tendon model in vivo. We report the use of intra-lesional injection of male, fetal derived embryonic-like stem cells (fdESC) that express Oct-4, Nanog, SSEA4, Tra 1-60, Tra 1-81 and telomerase. METHODS: Tendon injury was induced using a collagenase gel-physical defect model in the mid-metacarpal region of the superficial digital flexor tendon (SDFT) of eight female adult Thoroughbred or Thoroughbred cross horses. Tendon lesions were treated one week later with intra-lesional injection of male derived fdESCs in media or media alone. Therapy was blinded and randomized. Serial ultrasound examinations were performed and final analysis at eight weeks included magnetic resonance imaging (MRI), biochemical assays (total DNA, glycosaminoglycan, collagen), gene expression (TNC, TNMD, SCX, COL1A1, COL3A1, COMP, DCN, MMP1, MMP3, MMP13, 18S) and histology. Differences between groups were assessed with Wilcoxon's rank sum test. RESULTS: Cell survival was demonstrated via the presence of the SRY gene in fdESC treated, but not control treated, female SDFT at the end of the trial. There were no differences in tendon matrix specific gene expression or total proteoglycan, collagen or DNA of tendon lesions between groups. Tissue architecture, tendon size, tendon lesion size, and tendon linear fiber pattern were significantly improved on histologic sections and ultrasound in the fdESC treated tendons. CONCLUSIONS: Such profound structural effects lend further support to the notion that pluripotent stem cells can effect musculoskeletal regeneration, rather than repair, even without in vitro lineage specific differentiation. Further investigation into the safety of pluripotent cellular therapy as well as the mechanisms by which repair was improved seem warranted.


Assuntos
Doenças dos Cavalos/terapia , Células-Tronco/citologia , Traumatismos dos Tendões/terapia , Animais , Colágeno/genética , Colágeno/imunologia , Colágeno/metabolismo , DNA/metabolismo , Modelos Animais de Doenças , Feminino , Doenças dos Cavalos/diagnóstico por imagem , Doenças dos Cavalos/patologia , Cavalos , Imageamento por Ressonância Magnética , Masculino , Proteoglicanas/genética , Proteoglicanas/metabolismo , Medicina Regenerativa , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Transplante de Células-Tronco/veterinária , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/veterinária , Ultrassonografia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa