Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 128(2): 500-512, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31602728

RESUMO

AIM: To study Weissella cibaria and Weissella confusa strains, lactic acid bacteria (LAB) members naturally present in food products, but not yet included in Qualified Presumption of Safety (QPS) list of European Food Safety Authority (EFSA). METHODS AND RESULTS: We carried out a comparative genome analysis of 23 sequenced W. cibaria and 7 W. confusa genomes, in parallel with a physiological and functional characterization of several strains previously isolated from sourdough-like maize bran fermentation. The genome analysis revealed the absence of dedicated pathogenicity factors. Some putative virulence genes found in Weissella genomes were also present in other LAB strains, considered safe by EFSA and commonly used as probiotics. The physiological tests carried out on our strains corroborated the genomic results. Moreover, the following functional traits of interest to application in the food sector were identified: the majority of tested strains displayed high acidification rate, high reducing ability, production of exopolysaccharides (EPS), arabinoxylan degradation ability, growth in the presence of fructo-oligosaccharides (FOS), bile and gastric juice tolerance, and antifungal activity. CONCLUSIONS: These results provide evidence for the possible use of selected strains of W. cibaria and W. confusa in the food sector. SIGNIFICANCE AND IMPACT OF THE STUDY: This polyphasic study adds to the body of knowledge on the functional and applicable characteristics of these controversial species of LAB. This knowledge contributes to design new selected cultures included in the QPS list required for food applications.


Assuntos
Weissella/genética , Weissella/metabolismo , Fermentação , Genoma Bacteriano , Genômica , Fenótipo , Polissacarídeos/biossíntese , Probióticos/análise , Probióticos/metabolismo , Weissella/classificação , Weissella/crescimento & desenvolvimento , Xilanos/metabolismo
2.
Lett Appl Microbiol ; 70(1): 48-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642537

RESUMO

This study aims to describe the native microbiota of fermented spelt, taking into consideration both lactic acid bacteria (LAB) and yeasts, for which little data are available. Five samples of commercial spelt flour were subjected to spontaneous fermentation to obtain a type I sourdough. A total of 186 LAB and 174 yeast isolates were selected at different refreshment steps and subjected to further analyses. Within LAB, coccal isolates constituted 78·5% of the total LAB, with the dominance of Pediococcus pentosaceus. Although documented before as a component, this is the first report of a spelt sourdough fermentation dominated by this homofermentative LAB, characterized by a high acidification rate, ability to utilize a wide range of carbon sources and to grow in high osmolarity conditions. Yeast communities resulted in four dominant species, Saccharomyces cerevisiae, Wickerhamomyces anomalus, Pichia fermentans and Clavispora lusitaniae. This study highlights for the first time the biodiversity and dynamics of yeast communities involved in sourdough fermentation of spelt. Compared to commercial baker's yeast, autochthonous W. anomalus, P. fermentans and S. cerevisiae isolates show a good performance, and their use could be an advantage for their acquired adaptation to the environment, providing stability to the fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY: Nowadays, there is a renewed interest in products based on spelt. This 'ancient grain' is a highly nutritional grain; however, its use is limited to bread-making processes, which are not standardized. The low baking and sensory quality of spelt can be overcome through fermentation processes. However, the autochthonous microbiota of spelt sourdough is poorly known. This study highlights the dynamics of microbial communities involved in sourdough fermentation of spelt and provides the basis for the selection of autochthonous cultures, with the aim of improving the nutritional potential of spelt and its rheology and bread-making properties.


Assuntos
Pão/microbiologia , Lactobacillales/metabolismo , Consórcios Microbianos , Triticum/microbiologia , Leveduras/metabolismo , Biodiversidade , Pão/análise , Fermentação , Farinha/microbiologia , Microbiologia de Alimentos , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Triticum/metabolismo , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa