Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 85(3): 1379-1396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32981114

RESUMO

PURPOSE: To develop a fat-water imaging method that allows reliable separation of the two tissues, uses established robust reconstruction methods, and requires only one single-echo acquisition. THEORY AND METHODS: The proposed method uses spectrally selective dual-band excitation in combination with CAIPIRINHA to generate separate images of fat and water simultaneously. Spatially selective excitation without cross-contamination is made possible by the use of spatial-spectral pulses. Fat and water images can either be visualized separately, or the fat images can be corrected for chemical shift displacement and, in gradient echo imaging, for chemical shift-related phase discrepancy, and recombined with water images, generating fat-water images free of chemical shift effects. Gradient echo and turbo spin echo sequences were developed based on this Simultaneous Multiple Resonance Frequency imaging (SMURF) approach and their performance was assessed at 3Tesla in imaging of the knee, breasts, and abdomen. RESULTS: The proposed method generated well-separated fat and water images with minimal unaliasing artefacts or cross-excitation, evidenced by the near absence of water signal attributed to the fat image and vice versa. The separation achieved was similar to or better than that using separate acquisitions with water- and fat-saturation or Dixon methods. The recombined fat-water images provided similar image contrast to conventional images, but the chemical shift effects were eliminated. CONCLUSION: Simultaneous Multiple Resonance Frequency imaging is a robust fat-water imaging technique that offers a solution to imaging of body regions with significant amounts of fat.


Assuntos
Diagnóstico por Imagem , Água , Tecido Adiposo/diagnóstico por imagem , Artefatos , Testes Diagnósticos de Rotina , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vibração
2.
MAGMA ; 33(4): 455-468, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31980962

RESUMO

OBJECTIVES: Chemical Shift Encoded Magnetic Resonance Imaging (CSE-MRI)-based quantification of low-level (< 5% of proton density fat fraction-PDFF) fat infiltration requires highly accurate data reconstruction for the assessment of hepatic or pancreatic fat accumulation in diagnostics and biomedical research. MATERIALS AND METHODS: We compare three software tools available for water/fat image reconstruction and PDFF quantification with MRS as the reference method. Based on the algorithm exploited in the tested software, the accuracy of fat fraction quantification varies. We evaluate them in phantom and in vivo MRS and MRI measurements. RESULTS: The signal model of Intralipid 20% emulsion used for phantoms was established for 3 T and 9.4 T fields. In all cases, we noticed a high coefficient of determination (R-squared) between MRS and MRI-PDFF measurements: in phantoms <0.9924-0.9990>; and in vivo <0.8069-0.9552>. Bland-Altman analysis was applied to phantom and in vivo measurements. DISCUSSION: Multi-echo MRI in combination with an advanced algorithm including multi-peak spectrum modeling appears as a valuable and accurate method for low-level PDFF quantification over large FOV in high resolution, and is much faster than MRS methods. The graph-cut algorithm (GC) showed the fewest water/fat swaps in the PDFF maps, and hence stands out as the most robust method of those tested.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Algoritmos , Emulsões , Feminino , Humanos , Fígado/diagnóstico por imagem , Masculino , Imagens de Fantasmas , Software , Água
3.
Front Phys ; 9: 665562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34849373

RESUMO

Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.

4.
Magn Reson Imaging ; 37: 164-170, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27890779

RESUMO

A number of 'Dixon' techniques based on fast spin echo (FSE) sequence have been proposed and successfully used in many branches of medicine. Some require only one scan, but most of them need multiple scans and long scan times. This article describes a new fast triple-spin-echo Dixon (FTSED) technique suitable for ultra-high field MRI, in which three specific time shifts are introduced in the echo train; thus, three images with defined water-fat phase-differences (0, π, 2π) are encoded in the phase of the acquired images without extreme restrictions upon the echo duration. The water and fat images are then calculated by iterative least-squares estimation method. The sequence was successfully implemented at a 9.4T ultra-high field MRI system and tested on a phantom and a rat.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Água Corporal/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Animais , Humanos , Análise dos Mínimos Quadrados , Masculino , Modelos Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa