Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295022

RESUMO

In this communication, we present a streamlined, reproducible synthetic method for the production of size-tunable poly(methyl methacrylate) (PMMA) nanoparticles (PMMANPs) and amine-functionalized block-copolymer PMMANPs (H2N-PMMANPs) by varying subcritical concentrations (i.e., below the concentration required to form micelles at 1 atm and 20 °C) of sodium dodecyl sulfate (SDS). We plotted the Z-average size data against SDS concentration, which revealed a second-order exponential decay function, expressed as [...] .

2.
Nanomaterials (Basel) ; 9(4)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978992

RESUMO

A simple photochemical method for making conjoined bi-metallic gold-silver (Au/Ag) nanotwins, a new breed of nanoparticles (NPs), is developed. To the best of our knowledge, the photochemical method resulted in distinct, conjoined, bimetallic nanotwins that are different from any well-established alloyed or core-shell nanostructures in the literature. The conjoined Au-Ag NPs possessed surface plasmon resonance (SPR) properties of both metals. The bimetallic nanostructures possessing distinctive optical properties of both metals were obtained using Au NPs as seeds in the first step, followed by the addition of a silver precursor as feed in the second step during a photochemical irradiation process. In the first step, small, isotropic or large, anisotropic Au NPs are generated by photoinduced reduction within a biocompatible chitosan (CS) polymer. In the second step, a silver precursor (AgNO3) is added as the feed to the AuNPs seed, followed by irradiation of the solution in the ice-bath. The entire photochemical irradiation process resulting in the formation of bimetallic Au-AgNPs did not involve any other reducing agents or stabilizing agents other than the CS polymer stabilizer. The small, conjoined Au-Ag bi-metallic NPs exhibited SPR with peak maxima centering at ~400 nm and ~550 nm, whereas the large conjoined nanoparticles exhibited SPR with peak maxima centering at ~400 nm, 550 nm, and 680 nm, characteristic of both gold and silver surface plasmons in solution. The tunability in the SPR and size of the bimetallic NPs were obtained by varying the reaction time and other reaction parameters, resulting in average sizes between 30 and 100 nm. The SPR, size, distribution, and elemental composition of the bi-metallic NPs were characterized using UV-Vis absorption, electron microscopy, and energy dispersive X-ray spectroscopy (EDS) studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa