Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(36): 22532-22543, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848058

RESUMO

High-resolution imaging techniques capable of detecting identifiable endogenous fluorophores in the eye along with genetic testing will dramatically improve diagnostic capabilities in the ophthalmology clinic and accelerate the development of new treatments for blinding diseases. Two-photon excitation (TPE)-based imaging overcomes the filtering of ultraviolet light by the lens of the human eye and thus can be utilized to discover defects in vitamin A metabolism during the regeneration of the visual pigments required for the detection of light. Combining TPE with fluorescence lifetime imaging (FLIM) and spectral analyses offers the potential of detecting diseases of the retina at earlier stages before irreversible structural damage has occurred. The main barriers to realizing the benefits of TPE for imaging the human retina arise from concerns about the high light exposure typically needed for informative TPE imaging and the requirement to correlate the ensuing data with different states of health and disease. To overcome these hurdles, we improved TPE efficiency by controlling temporal properties of the excitation light and employed phasor analyses to FLIM and spectral data in mouse models of retinal diseases. Modeling of retinal photodamage revealed that plasma-mediated effects do not play a role and that melanin-related thermal effects are mitigated by reducing pulse repetition frequency. By using noninvasive TPE imaging we identified molecular components of individual granules in the retinal pigment epithelium and present their analytical characteristics.


Assuntos
Biópsia/métodos , Imagem Óptica/métodos , Retina/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Corantes Fluorescentes , Camundongos , Camundongos Endogâmicos C57BL , Retina/química , Doenças Retinianas/diagnóstico por imagem , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/diagnóstico por imagem
2.
Biomed Opt Express ; 14(6): 2857-2872, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342710

RESUMO

This report presents the results of measurements of the two-photon vision threshold for various pulse trains. We employed three pulsed near-infrared lasers and pulse stretchers to obtain variations of the pulse duty cycle parameter over three orders of magnitude. We proposed and extensively described a mathematical model that combines the laser parameters with the visual threshold value. The presented methodology enables one to predict the visual threshold value for a two-photon stimulus for a healthy subject while using a laser source of known parameters. Our findings would be of value to laser engineers and the community interested in nonlinear visual perception.

3.
Biomed Opt Express ; 12(1): 462-479, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659083

RESUMO

Two-photon vision is a phenomenon associated with the perception of short pulses of near-infrared radiation (900-1200 nm) as a visible light. It is caused by the nonlinear process of two-photon absorption by visual pigments. Here we present results showing the influence of pulse duration and repetition rate of short pulsed lasers on the visual threshold. We compared two-photon sensitivity maps of the retina obtained for subjects with normal vision using a cost-effective fiber laser (λc = 1028.4 nm, τp = 12.2 ps, Frep = 19.17 MHz) and a solid-state laser (λc = 1043.3 nm, τp = 0.253 ps, Frep = 62.65 MHz). We have shown that in accordance with the description of two-photon absorption, the average optical power required for two-photon vision for a fiber laser is 4 times greater than that for a solid-state laser. Mean sensitivity measured for the first one is 5.9 ± 2.8 dB lower than for the second but still 17 dB away from the safety limit, confirming that picosecond light sources can be successfully applied in microperimetry. This development would dramatically reduce the cost and complexity of future clinical devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa