RESUMO
Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.
Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/imunologia , Proteínas Quinases/metabolismo , Pseudomonas syringae/imunologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Virulência/imunologia , ADP Ribose Transferases/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Membrana Celular , Ensaio de Desvio de Mobilidade Eletroforética , Imunidade Inata , Imunoprecipitação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Biossíntese de Proteínas , Proteínas Quinases/genética , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Reconhecimento de Padrão/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Plants show a suite of inducible defense responses against bacterial pathogens. Here we investigate in detail the effect of the circadian clock on these reactions in Arabidopsis thaliana. The magnitude of immune responses elicited by flg22, by virulent and by avirulent Pseudomonas syringae strains depends on the time of day of inoculation. The oxidative burst is stronger when flg22 is infiltrated in the morning in wild-type plants but not in the arrhythmic clock mutant lux arrhythmo/phytoclock1 (pcl1), and thus is controlled by the endogenous clock. Similarly, when bacteria are syringe-infiltrated into the leaf, defense gene induction is higher and bacterial growth is suppressed more strongly after morning inoculation in wild-type but not in pcl1 plants. Furthermore, cell death associated with the hypersensitive response was found to be under clock control. Notably, the clock effect depends on the mode of infection: upon spray inoculation onto the leaf surface, defense gene induction is higher and bacterial growth is suppressed more strongly upon evening inoculation. This different phasing of pre-invasive and post-invasive defense relates to clock-regulated stomatal movement. In particular, TIME FOR COFFEE may impact pathogen defense via clock-regulated stomata movement apart from its known role in time-of-day-dependent jasmonate responses. Taken together, these data highlight the importance of the circadian clock for the control of different immune responses at distinct times of the day.
Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Flagelina/metabolismo , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1â AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1â AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosídeos/farmacologia , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Transferases Intramoleculares/metabolismo , Oxigenases de Função Mista/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/patogenicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Salicilatos/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Transcrição Gênica/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genéticaRESUMO
Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.
Assuntos
Imunidade Vegetal/imunologia , RNA de Plantas/metabolismo , Inativação Gênica , Splicing de RNA/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
The Pseudomonas syringae type III effector HopU1 is a mono-ADP-ribosyltransferase that is injected into plant cells by the type III protein secretion system. Inside the plant cell it suppresses immunity by modifying RNA-binding proteins including the glycine-rich RNA-binding protein GRP7. The crystal structure of HopU1 at 2.7-Å resolution reveals two unique protruding loops, L1 and L4, not found in other mono-ADP-ribosyltransferases. Site-directed mutagenesis demonstrates that these loops are essential for substrate recognition and enzymatic activity. HopU1 ADP-ribosylates the conserved arginine 49 of GRP7, and this reduces the ability of GRP7 to bind RNA in vitro. In vivo, expression of GRP7 with Arg-49 replaced with lysine does not complement the reduced immune responses of the Arabidopsis thaliana grp7-1 mutant demonstrating the importance of this residue for GRP7 function. These data provide mechanistic details how HopU1 recognizes this novel type of substrate and highlights the role of GRP7 in plant immunity.
Assuntos
ADP Ribose Transferases/metabolismo , Arabidopsis/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , ADP Ribose Transferases/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
BACKGROUND: The clock-controlled RNA-binding protein AtGRP7 influences circadian oscillations of its own transcript at the post-transcriptional level. To identify additional targets that are regulated by AtGRP7, transcript profiles of transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox) and wild type plants were compared. RESULTS: Approximately 1.4% of the transcripts represented on the Affymetrix ATH1 microarray showed changes in steady-state abundance upon AtGRP7 overexpression. One third of the differentially expressed genes are controlled by the circadian clock, and they show a distinct bias of their phase: The up-regulated genes preferentially peak around dawn, roughly opposite to the AtGRP7 peak abundance whereas the down-regulated genes preferentially peak at the end of the day. Further, transcripts responsive to abiotic and biotic stimuli were enriched among AtGRP7 targets. Transcripts encoding the pathogenesis-related PR1 and PR2 proteins were elevated in AtGRP7-ox plants but not in plants overexpressing AtGRP7 with a point mutation in the RNA-binding domain, indicating that the regulation involves RNA binding activity of AtGRP7. Gene set enrichment analysis uncovered components involved in ribosome function and RNA metabolism among groups of genes upregulated in AtGRP7-ox plants, consistent with its role in post-transcriptional regulation. CONCLUSION: Apart from regulating a suite of circadian transcripts in a time-of-day dependent manner AtGRP7, both directly and indirectly, affects other transcripts including transcripts responsive to abiotic and biotic stimuli. This suggests a regulatory role of AtGRP7 in the output of the endogenous clock and a complex network of transcripts responsive to external stimuli downstream of the AtGRP7 autoregulatory circuit.