Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 228(0): 226-241, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33586720

RESUMO

Studies of ultrafast relaxation of molecular chromophores are complicated by the fact that most chromophores of biological and technological importance are rather large molecules and are strongly affected by their environment, either solvent or a protein cage. Here we present an approach which allows us to follow transient electronic structure of complex photoexcited molecules. We use the method of time-resolved photoelectron spectroscopy in solution to follow relaxation of two prototypical aqueous chromophores, Methyl Orange and Metanil Yellow, both of which are aminoazobenzene derivatives. Using excitation by 400 nm laser pulses and ionization by wavelength-selected 46.7 nm XUV pulses from high-order harmonic generation we follow relaxation of both molecules via the dark S1 state. The photoelectron spectra yield binding energies of both ground and excited states. We combine the experimental results with surface hopping time-dependent density functional theory (TDDFT) calculations employing B3LYP+D3 and ωB97X-D functionals. The results demonstrate that the method is generally suitable for description of ultrafast dynamics in these molecules and can recover absolute binding energies observed in the experiment. The B3LYP+D3 functional appears to be better suited for these systems, especially in the case of Metanil Yellow, where it indicates the importance of an intramolecular charge transfer state. Our results pave the way towards quantitative understanding of evolving electronic structure in photo-induced relaxation processes.

2.
J Phys Chem A ; 125(39): 8549-8556, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34569788

RESUMO

Time-resolved XUV-IR photoion mass spectroscopy of naphthalene conducted with broadband as well as with wavelength-selected narrowband XUV pulses reveals a rising probability of fragmentation characterized by a lifetime of 92 ± 4 fs. This lifetime is independent of the XUV excitation wavelength and is the same for all low appearance energy fragments recorded in the experiment. Analysis of the experimental data in conjunction with a statistical multistate vibronic model suggests that the experimental signals track vibrational energy redistribution on the potential energy surface of the ground-state cation. In particular, populations of the out-of-plane ring twist and the out-of-plane wave bending modes could be responsible for opening new IR absorption channels, leading to enhanced fragmentation.

3.
J Phys Chem A ; 125(9): 1845-1859, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651619

RESUMO

Bifunctional or amphoteric photoacids simultaneously present donor (acidic) and acceptor (basic) properties making them useful tools to analyze proton transfer reactions. In protic solvents, the proton exchange between the acid and the base is controlled by the acidity or basicity strength and typically occurs on two different pathways known as protolysis and hydrolysis. We report here how the addition of a formate base will alter the relative importance of the possible reaction pathways of the bifunctional photoacid 7-hydroxyquinoline (7HQ), which has been recently understood to predominantly involve a hydroxide/methoxide transport mechanism between the basic proton-accepting quinoline nitrogen site toward the proton-donating OH group with a time constant of 360 ps in deuterated methanol (CD3OD). We follow the reaction dynamics by probing the IR-active marker modes of the different charged forms of photoexcited 7HQ, and of formic acid (HCOOD) in CD3OD solution. A comparison of the transient IR spectra as a function of formate concentration, and classical molecular dynamics simulations enables us to identify distinct contributions of "tight" (meaning "contact") and "loose" (i.e., "solvent-separated") 7HQ-formate reaction pairs in our data. Our results suggest that depending on the orientation of the OH group with respect to the quinoline aromatic ring system, the presence of the formate molecule in a proton relay pathway facilitates a net proton transfer from the proton-donating OH group of 7HQ-N* via the methanol/formate bridge toward the quinoline N site.

4.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684825

RESUMO

The absence of magic numbers in bosonic 4He clusters predicted by all theories since 1984 has been challenged by high-resolution matter-wave diffraction experiments. The observed magic numbers were explained in terms of enhanced growth rates of specific cluster sizes for which an additional excitation level calculated by diffusion Monte Carlo is stabilized. The present theoretical study provides an alternative explanation based on a simple independent particle model of the He clusters. Collisions between cluster atoms in excited states within the cluster lead to selective evaporation via an Auger process. The calculated magic numbers as well as the shape of the number distributions are in quite reasonable agreement with the experiments.

5.
J Am Chem Soc ; 141(37): 14581-14592, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31446754

RESUMO

Aqueous proton transport plays a key role in acid-base neutralization and energy transport through biological membranes and hydrogen fuel cells. Extensive experimental and theoretical studies have resulted in a highly detailed elucidation of one of the underlying microscopic mechanisms for aqueous excess proton transport, known as the von Grotthuss mechanism, involving different hydrated proton configurations with associated high fluxional structural dynamics. Hydroxide transport, with approximately 2-fold-lower bulk diffusion rates compared to those of excess protons, has received much less attention. We present femtosecond UV/IR pump-probe experiments and ab initio molecular dynamics simulations of different proton transport pathways of bifunctional photoacid 7-hydroxyquinoline (7HQ) in water/methanol mixtures. For 7HQ solvent-dependent photoacidity, free-energy-reactivity correlation behavior and quantum mechanics/molecular mechanics (QM/MM) trajectories point to a dominant OH-/CH3O- transport pathway for all water/methanol mixing ratios investigated. Our joint ultrafast infrared spectroscopic and ab initio molecular dynamics study provides conclusive evidence for the hydrolysis/methanolysis acid-base neutralization pathway, as formulated by Manfred Eigen half a century ago. Our findings on the distinctly different acid-base reactivities for aromatic hydroxyl and aromatic nitrogen functionalities suggest the usefulness of further exploration of these free-energy-reactivity correlations as a function of solvent polarity. Ultimately the determination of solvent-dependent acidities will contribute to a better understanding of proton-transport mechanisms at weakly polar surfaces and near polar or ionic regions in transmembrane proton pump proteins or hydrogen fuel cell materials.

6.
J Phys Chem A ; 123(14): 3068-3073, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30888820

RESUMO

Rapid energy transfer from electronic to nuclear degrees of freedom underlies many biological processes and astrophysical observations. The efficiency of this energy transfer depends strongly on the complex interplay between electronic and nuclear motions. In this study, we report two-color pump-probe experiments that probe the relaxation dynamics of highly excited cationic states of naphthalene, a prototypical polycyclic aromatic hydrocarbon molecule, which are produced using wavelength-selected, ultrashort extreme ultraviolet pulses. Surprisingly, the relaxation lifetimes increase with the cationic excitation energy. We postulate that the observed effect is the result of a population trapping that leads to delayed relaxation.

7.
Phys Rev Lett ; 116(16): 163003, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152799

RESUMO

Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1 fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

8.
Faraday Discuss ; 194: 509-524, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711778

RESUMO

An autoionizing resonance in molecular N2 is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of 20 ± 5 fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations suggest, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.

13.
J Chem Phys ; 142(7): 074303, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25702011

RESUMO

The size distribution of para-H2 (pH2) clusters produced in free jet expansions at a source temperature of T0 = 29.5 K and pressures of P0 = 0.9-1.96 bars is reported and analyzed according to a cluster growth model based on the Smoluchowski theory with kernel scaling. Good overall agreement is found between the measured and predicted, Nk = A k(a) e(-bk), shape of the distribution. The fit yields values for A and b for values of a derived from simple collision models. The small remaining deviations between measured abundances and theory imply a (pH2)k magic number cluster of k = 13 as has been observed previously by Raman spectroscopy. The predicted linear dependence of b(-(a+1)) on source gas pressure was verified and used to determine the value of the basic effective agglomeration reaction rate constant. A comparison of the corresponding effective growth cross sections σ11 with results from a similar analysis of He cluster size distributions indicates that the latter are much larger by a factor 6-10. An analysis of the three body recombination rates, the geometric sizes and the fact that the He clusters are liquid independent of their size can explain the larger cross sections found for He.

14.
Parasit Vectors ; 16(1): 243, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468906

RESUMO

BACKGROUND: Helminth infections are an important public health problem in humans and have an even greater impact on domestic animal and livestock welfare. Current readouts for anthelmintic drug screening assays are stage development, migration, or motility that can be subjective, laborious, and low in throughput. The aim of this study was to apply and optimize a fluorometric technique using resazurin for evaluating changes in the metabolic activity of Ascaris suum third-stage larvae (L3), a parasite of high economic relevance in swine. METHODS: Ascaris suum L3 were mechanically hatched from 6- to 8-week embryonated and sucrose-gradient-enriched eggs. Resazurin dye and A. suum L3 were titrated in 96-well microtiter plates, and resazurin reduction activity was assessed by fluorometry after 24 h of incubation. Fluorescence microscopy was used to localize the resazurin reduction site within the larvae. Finally, we exposed A. suum L3 to various stress conditions including heat, methanol, and anthelmintics, and investigated their impact on larval metabolism through resazurin reduction activity. RESULTS: We show that the non-fluorescent dye resazurin is reduced inside vital A. suum L3 to fluorescent resorufin and released into the culture media. Optimal assay parameters are 100-1000 L3 per well, a resazurin concentration of 7.5 µg/ml, and incubation at 37 °C/5% CO2 for 24 h. An intact L2 sheath around the L3 of A. suum completely prevents the uptake of resazurin, while in unsheathed L3, the most intense fluorescence signal is observed along the larval midgut. L3 exposed to methanol or heat show a gradually decreased resazurin reduction activity. In addition, 24 h exposure to ivermectin at 0.625 µM, mebendazole at 5 µM, and thiabendazole from 10 to 100 µM significantly decreased larval metabolic activity by 55%, 73%, and 70% to 89%, respectively. CONCLUSIONS: Together, our results show that both metabolic stressors and anthelmintic drugs significantly and reproducibly reduce the resazurin reduction activity of A. suum L3, making the proposed assay a sensitive and easy-to-use method to evaluate metabolic activity of A. suum L3 in vitro.


Assuntos
Anti-Helmínticos , Ascaríase , Ascaris suum , Humanos , Animais , Suínos , Metanol/farmacologia , Metanol/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Xantenos/farmacologia , Xantenos/uso terapêutico , Ascaríase/parasitologia , Larva
15.
J Phys Chem Lett ; 14(20): 4775-4785, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37186569

RESUMO

Imidazole, being an amphoteric molecule, can act both as an acid and as a base. This property enables imidazole, as an essential building block, to effectively facilitate proton transport in high-temperature proton exchange membrane fuel cells and in proton channel transmembrane proteins, enabling those systems to exhibit high energy conversion yields and optimal biological function. We explore the amphoteric properties of imidazole by following the proton transfer exchange reaction dynamics with the bifunctional photoacid 7-hydroxyquinoline (7HQ). We show with ultrafast ultraviolet-mid-infrared pump-probe spectroscopy how for imidazole, in contrast to expectations based on textbook knowledge of acid-base reactivity, the preferential reaction pathway is that of an initial proton transfer from 7HQ to imidazole, and only at a later stage a transfer from imidazole to 7HQ, completing the 7HQ tautomerization reaction. An assessment of the molecular distribution functions and first-principles calculations of proton transfer reaction barriers reveal the underlying reasons for our observations.

16.
Phys Rev Lett ; 108(23): 233401, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003953

RESUMO

All matter exposed to intense femtosecond x-ray pulses from the Linac Coherent Light Source free-electron laser is strongly ionized on time scales competing with the inner-shell vacancy lifetimes. We show that for nanoscale objects the environment, i.e., nanoparticle size, is an important parameter for the time-dependent ionization dynamics. The Auger lifetimes of large Ar clusters are found to be increased compared to small clusters and isolated atoms, due to delocalization of the valence electrons in the x-ray-induced nanoplasma. As a consequence, large nanometer-sized samples absorb intense femtosecond x-ray pulses less efficiently than small ones.

17.
J Chem Phys ; 137(21): 214302, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23231226

RESUMO

The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 ± 0.2 eV, Rydberg atoms in n = 3 and n = 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n = 3 Rydberg atoms are ejected with kinetic energies as high as 0.85 eV, but their appearance is delayed by approximately 200 fs. In contrast, n = 4 Rydberg atoms appear within the time resolution of the experiment with considerably lower kinetic energies. Major features in the Rydberg atom kinetic energy distributions for both principal quantum numbers can be described within a simple elastic scattering model of localized perturbed atomic Rydberg atoms that are expelled from the droplet due to their repulsive interaction with the surrounding helium bath. Time-dependent kinetic energy distributions of He(2) (+) and He(3) (+) ions are presented that support the formation of molecular ions in an indirect droplet ionization process and the ejection of neutral Rydberg dimers on a similar time scale as the n = 3 Rydberg atoms.

20.
J Phys Chem A ; 115(27): 7891-900, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21688802

RESUMO

Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa