Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(6): H1366-H1385, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578240

RESUMO

Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1ß, Nlrp3, p21, p16, SA-ß-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.


Assuntos
Envelhecimento , Epóxido Hidrolases , Lipopolissacarídeos , Animais , Feminino , Camundongos , Fatores Etários , Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores Sexuais
2.
J Cardiovasc Pharmacol ; 83(1): 105-115, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180457

RESUMO

ABSTRACT: Mounting evidence suggests that cytochrome P450 epoxygenase-derived metabolites of docosahexaenoic acid, called epoxydocosapentaenoic acids (EDPs), limit mitochondrial damage after cardiac injury. In particular, the 19,20-EDP regioisomer has demonstrated potent cardioprotective action. Thus, we investigated our novel synthetic 19,20-EDP analog SA-22 for protection against cardiac ischemia-reperfusion (IR) injury. Isolated C57BL/6J mouse hearts were perfused through Langendorff apparatus for 20 minutes to obtain baseline function, followed by 30 minutes of global ischemia. Hearts were then treated with vehicle, 19,20-EDP, SA-22, or SA-22 with the pan-sirtuin inhibitor nicotinamide or the SIRT3-selective inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) at the start of 40 minutes reperfusion (N = 5-8). We assessed IR injury-induced changes in recovery of myocardial function, using left ventricular developed pressure and systolic and diastolic pressure change. Tissues were assessed for electron transport chain function, SIRT1 and SIRT3, optic atrophy type 1, and caspase-1. We also used H9c2 cells in an in vitro model of hypoxia/reoxygenation injury (N = 3-6). Hearts perfused with SA-22 had significantly improved postischemic left ventricular developed pressure, systolic and diastolic recovery (64% of baseline), compared with vehicle control (15% of baseline). In addition, treatment with SA-22 led to better catalytic function observed in electron transport chain and SIRT enzymes. The protective action of SA-22 resulted in reduced activation of pyroptosis in both hearts and cells after injury. Interestingly, although nicotinamide cotreatment worsened functional outcomes, cell survival, and attenuated sirtuin activity, it failed to completely attenuate SA-22-induced protection against pyroptosis, possibly indicating EDPs exert cytoprotection through pleiotropic mechanisms. In short, these data demonstrate the potential of our novel synthetic 19,20-EDP analog, SA-22, against IR/hypoxia-reoxygenation injury and justify further development of therapeutic agents based on 19,20-EDP.


Assuntos
Sirtuína 3 , Camundongos , Animais , Camundongos Endogâmicos C57BL , Hipóxia , Isquemia , Niacinamida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa