Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Analyst ; 145(17): 5861-5869, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32661523

RESUMO

Laser ablation electrospray ionization (LAESI) driven by mid-infrared laser pulses allows the direct analysis of biological tissues with minimal sample preparation. Dedicated remote ablation chambers have been developed to eliminate the need for close proximity between the sample and the mass spectrometer inlet. This also allows for the analysis of large or irregularly shaped objects, and incorporation of additional optics for microscopic imaging. Here we report on the characterization of a newly designed conical inner volume ablation chamber working in transmission geometry, where a reduced zone of stagnation was achieved by tapering the sample platform and the chamber outlet. As a result, the transmission efficiency of both large (>7.5 µm) and smaller particulates (<6.5 µm) has increased significantly. Improved analytical figures of merit, including 300 fmol limit of detection, and three orders of magnitude in dynamic range, were established. Particle residence time, measured by the FWHM of the analyte signal, was reduced from 2.0 s to 0.5 s enabling higher ablation rates and shorter analysis time. A total of six glucosinolates (sinigrin, gluconapin, progoitrin, glucoiberin, glucoraphanin, and glucohirsutin) were detected in plant samples with ion abundances higher by a factor of 2 to 8 for the redesigned ablation chamber.

2.
Analyst ; 145(21): 6910-6918, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32840500

RESUMO

Mass spectrometry imaging (MSI) is a powerful analytical technique that enables detection, discovery, and identification of multiple classes of biomolecules, while simultaneously mapping their spatial distributions within a sample (e.g., a section of biological tissue). The limitation in molecular coverage afforded by any single MSI platform has led to the development of multimodal approaches that incorporate two or more techniques to obtain greater chemical information. Matrix-assisted laser desorption ionization (MALDI) is a preeminent ionization technique for MSI applications because the wide range of available matrices allows some degree of enhancement with respect to the detection of particular molecular classes. Nonetheless, MALDI has a limited ability to detect and image several classes of molecules, e.g., neutral lipids, in complex samples. Laser desorption ionization from silicon nanopost arrays (NAPA-LDI or NAPA) has been shown to offer complementary coverage with respect to MALDI by providing improved detection of neutral lipids and some small metabolites. Here, we present a multimodal imaging method in which a single tissue section is consecutively imaged at low and high laser fluences, generating spectra that are characteristic of MALDI and NAPA ionization, respectively. The method is demonstrated to map the distributions of species amenable to detection by MALDI (e.g., phospholipids and intermediate-mass metabolites) and NAPA (e.g., neutral lipids such as triglycerides and hexosylceramides, and small metabolites) in mouse brain and lung tissue sections.


Assuntos
Imagem Molecular , Silício , Animais , Lasers , Camundongos , Imagem Multimodal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Angew Chem Int Ed Engl ; 59(11): 4484-4490, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31917890

RESUMO

Soot (sometimes referred to as black carbon) is produced when hydrocarbon fuels are burned. Our hypothesis is that polynuclear aromatic hydrocarbon (PAH) molecules are the dominant component of soot, with individual PAH molecules forming ordered stacks that agglomerate into primary particles (PP). Here we show that the PAH composition of soot can be exactly determined and spatially resolved by low-fluence laser desorption ionization, coupled with high-resolution mass spectrometry imaging. This analysis revealed that PAHs of 239-838 Da, containing few oxygenated species, comprise the soot observed in an ethylene diffusion flame. As informed by chemical graph theory (CGT), the vast majority of species observed in the sampled particulate matter may be described as benzenoids, consisting of only fused 6-membered rings. Within that limit, there is clear evidence for the presence of radical PAH in the particulate samples. Further, for benzenoid structures the observed empirical formulae limit the observed isomers to those which are nearly circular with high aromatic conjugation lengths for a given aromatic ring count. These results stand in contrast to recent reports that suggest higher aliphatic composition of primary particles.

4.
Anal Chem ; 91(6): 3951-3958, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30786207

RESUMO

Silicon nanopost array (NAPA) structures have been shown to be effective substrates for laser desorption/ionization-mass spectrometry (LDI-MS) and have been used to analyze a variety of samples including peptides, metabolites, drugs, explosives, and intact cells, as well as to image lipids and metabolites in tissue sections. However, no direct comparison has yet been conducted between NAPA-MS and the most commonly used LDI-MS technique, matrix-assisted laser desorption/ionization (MALDI)-MS. In this work, we compare the utility of NAPA-MS to that of MALDI-MS using two common matrices for the analysis of metabolites in cellular extracts and human urine. Considerable complementarity of molecular coverage was observed between the two techniques. Of 178 total metabolites assigned from cellular extracts, 68 were uniquely detected by NAPA-MS and 62 were uniquely detected by MALDI-MS. NAPA-MS was found to provide enhanced coverage of low-molecular weight compounds such as amino acids, whereas MALDI afforded better detection of larger, labile compounds including nucleotides. In the case of urine, a sample largely devoid of higher-mass labile compounds, 88 compounds were uniquely detected by NAPA-MS and 13 by MALDI-MS. NAPA-MS also favored more extensive alkali metal cation adduction relative to MALDI-MS, with the [M + 2Na/K - H]+ species accounting for as much as 97% of the total metabolite ion signal in positive mode. The capability of NAPA-MS for targeted quantitation of endogenous metabolites in urine via addition of isotopically labeled standards was also examined. Both NAPA-MS and MALDI-MS provided quantitative results in good agreement with one another and the concentrations reported in the literature, as well as good sample-to-sample reproducibility (RSD < 10%).


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metaboloma , Metabolômica/métodos , Nanoestruturas/química , Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Marcação por Isótopo , Lasers , Reprodutibilidade dos Testes
5.
Plant Physiol ; 174(4): 2532-2548, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28634228

RESUMO

Germination is a highly complex process by which seeds begin to develop and establish themselves as viable organisms. In this study, we utilize a combination of gas chromatography-mass spectrometry, liquid chromatography-fluorescence, and mass spectrometry imaging approaches to profile and visualize the metabolic distributions of germinating seeds from two different inbreds of maize (Zea mays) seeds, B73 and Mo17. Gas chromatography and liquid chromatography analyses demonstrate that the two inbreds are highly differentiated in their metabolite profiles throughout the course of germination, especially with regard to amino acids, sugar alcohols, and small organic acids. Crude dissection of the seed followed by gas chromatography-mass spectrometry analysis of polar metabolites also revealed that many compounds were highly sequestered among the various seed tissue types. To further localize compounds, matrix-assisted laser desorption/ionization mass spectrometry imaging was utilized to visualize compounds in fine detail in their native environments over the course of germination. Most notably, the fatty acyl chain-dependent differential localization of phospholipids and triacylglycerols was observed within the embryo and radicle, showing correlation with the heterogeneous distribution of fatty acids. Other interesting observations include unusual localization of ceramides on the endosperm/scutellum boundary and subcellular localization of ferulate in the aleurone.


Assuntos
Germinação , Metaboloma , Metabolômica/métodos , Sementes/metabolismo , Ácidos Carboxílicos/metabolismo , Respiração Celular , Ceramidas/metabolismo , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
6.
Analyst ; 142(17): 3157-3164, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28678241

RESUMO

Laser ablation electrospray ionization-mass spectrometry (LAESI-MS) allows for direct analysis of biological tissues at atmospheric pressure with minimal to no sample preparation. In LAESI, a mid-IR laser beam (λ = 2.94 µm) is focused onto the sample to produce an ablation plume that is intercepted and ionized by an electrospray at the inlet of the mass spectrometer. In the remote LAESI platform, the ablation process is removed from the mass spectrometer inlet and takes place in an ablation chamber, allowing for incorporation of additional optics for microscopic imaging and targeting of specific features of the sample for laser ablation sampling. The ablated material is transported by a carrier gas through a length of tubing, delivering it to the MS inlet where it is intercepted and ionized by an electrospray. Previous proof-of-principle studies used a prolate spheroid ablation chamber with the carrier gas flow perpendicular to the ablation plume. This design resulted in significant losses of MS signal in comparison to conventional LAESI. Here we present a newly designed conical inner volume ablation chamber that radially confines the ablation plume produced in transmission geometry. The carrier gas flow and the expanding ablation plume are aligned in a coaxial configuration to improve the transfer of ablated particles. This new design not only recovered the losses observed with the prolate spheroid chamber design, but was found to provide an ∼12-15% increase in the number of metabolite peaks detected from plant leaves and tissue sections relative to conventional LAESI.


Assuntos
Lasers , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray , Pressão Atmosférica
7.
Anal Chem ; 88(18): 8989-96, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27399036

RESUMO

The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysis of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. The broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications.


Assuntos
Metabolômica/métodos , Análise em Microsséries/métodos , Nanoestruturas/química , Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aminoácidos/análise , Aminoácidos/sangue , Aminoácidos/metabolismo , Desenho de Equipamento , Humanos , Redes e Vias Metabólicas , Metaboloma , Metabolômica/instrumentação , Análise em Microsséries/instrumentação , Nanoestruturas/ultraestrutura , Soro/química , Soro/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
8.
Anal Chem ; 88(18): 8926-30, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27573492

RESUMO

Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. The screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

9.
Angew Chem Int Ed Engl ; 55(14): 4482-6, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26929010

RESUMO

Mass spectrometry imaging (MSI) is a comprehensive tool for the analysis of a wide range of biomolecules. The mainstream method for molecular MSI is matrix-assisted laser desorption ionization, however, the presence of a matrix results in spectral interferences and the suppression of some analyte ions. Herein we demonstrate a new matrix-free MSI technique using nanophotonic ionization based on laser desorption ionization (LDI) from a highly uniform silicon nanopost array (NAPA). In mouse brain and kidney tissue sections, the distributions of over 80 putatively annotated molecular species are determined with 40 µm spatial resolution. Furthermore, NAPA-LDI-MS is used to selectively analyze metabolites and lipids from sparsely distributed algal cells and the lamellipodia of human hepatocytes. Our results open the door for matrix-free MSI of tissue sections and small cell populations by nanophotonic ionization.


Assuntos
Lasers , Imagem Molecular , Fótons , Animais , Camundongos , Microscopia Eletrônica de Varredura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Plant Cell ; 24(2): 622-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22337917

RESUMO

Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry.


Assuntos
Gossypium/embriologia , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Gossypium/química , Sementes/química , Sementes/embriologia
11.
Anal Bioanal Chem ; 407(8): 2301-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618761

RESUMO

A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. Here, we present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 µm for the commercial configuration down to ~9 µm for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-µm spatial resolution using an oversampling method. A variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed.


Assuntos
Folhas de Planta/química , Zea mays/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zea mays/química
12.
J Mass Spectrom ; 55(4): e4443, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31524963

RESUMO

Mass spectrometry imaging (MSI) is used increasingly to simultaneously detect a broad range of biomolecules while mapping their spatial distributions within biological tissue sections. Matrix-assisted laser desorption ionization (MALDI) is recognized as the method-of-choice for MSI applications due in part to its broad molecular coverage. In spite of the remarkable advantages offered by MALDI, imaging of neutral lipids, such as triglycerides (TGs), from tissue has remained a significant challenge due to ion suppression of TGs by phospholipids, e.g. phosphatidylcholines (PCs). To help overcome this limitation, silicon nanopost array (NAPA) substrates were introduced to selectively ionize TGs from biological tissue sections. This matrix-free laser desorption ionization (LDI) platform was previously shown to provide enhanced ionization of certain lipid classes, such as hexosylceramides (HexCers) and phosphatidylethanolamines (PEs) from mouse brain tissue. In this work, we present NAPA as an MSI platform offering enhanced ionization efficiency for TGs from biological tissues relative to MALDI, allowing it to serve as a complement to MALDI-MSI. Analysis of a standard lipid mixture containing PC(18:1/18:1) and TG(16:0/16:0/16:0) by LDI from NAPA provided an ~49 and ~227-fold higher signal for TG(16:0/16:0/16:0) relative to MALDI, when analyzed without and with the addition of a sodium acetate, respectively. In contrast, MALDI provided an ~757 and ~295-fold higher signal for PC(18:1/18:1) compared with NAPA, without and with additional Na+ . Averaged signal intensities for TGs from MSI of mouse lung and human skin tissues exhibited an ~105 and ~49-fold increase, respectively, with LDI from NAPA compared with MALDI. With respect to PCs, MALDI provided an ~2 and ~19-fold increase in signal intensity for mouse lung and human skin tissues, respectively, when compared with NAPA. The complementary coverage obtained by the two platforms demonstrates the utility of using both techniques to maximize the information obtained from lipid MS or MSI experiments.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triglicerídeos/análise , Animais , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Imagem Molecular , Nanoestruturas/química , Fosfatidilcolinas/análise , Silício/química , Pele/citologia , Pele/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
13.
J Comp Neurol ; 527(13): 2101-2121, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358893

RESUMO

Mass spectrometry imaging (MSI) is capable of detection and identification of diverse classes of compounds in brain tissue sections, whereas simultaneously mapping their spatial distributions. Given the vast array of chemical components present in neurological systems, as well as the innate diversity within molecular classes, MSI platforms capable of detecting a wide array of species are useful for achieving a more comprehensive understanding of their biological roles and significance. Currently, matrix-assisted laser desorption ionization (MALDI) is the method of choice for the molecular imaging of brain samples by mass spectrometry. However, nanostructured laser desorption ionization platforms, such as silicon nanopost arrays (NAPA), are emerging as alternative MSI techniques that can provide complementary insight into molecular distributions in the central nervous system. In this work, the molecular coverage of mouse brain lipids afforded by NAPA-MSI is compared to that of MALDI-MSI using two common MALDI matrices. In positive ion mode, MALDI spectra were dominated by phosphatidylcholines and phosphatidic acids. NAPA favored the ionization of phosphatidylethanolamines and glycosylated ceramides, which were poorly detected in MALDI-MSI. In negative ion mode, MALDI favored sulfatides and free fatty acids, whereas NAPA spectra were dominated by signal from phosphatidylethanolamines. The complementarity in lipid coverages between the NAPA- and MALDI-MSI platforms presents the possibility of selective lipid analysis and imaging dependent upon which platform is used. Nanofabrication of the NAPA platform offers better uniformity compared to MALDI, and the wider dynamic range offered by NAPA promises improved quantitation in imaging.


Assuntos
Encéfalo , Nanotecnologia/métodos , Neuroimagem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Processamento de Imagem Assistida por Computador , Lipídeos/análise , Camundongos , Silício
14.
Sci Rep ; 9(1): 17508, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767918

RESUMO

Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs). To help overcome this obstacle, we have utilized silicon nanopost arrays (NAPA), a matrix-free laser desorption ionization (LDI) platform. Hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory skin disease of the apocrine sweat glands. The ability of NAPA to efficiently ionize lipids is exploited in the analysis of human skin samples from sufferers of HS. Ionization by LDI from NAPA allows for the detection and imaging of a number of neutral lipid species, including TGs comprised of shorter, odd-chain fatty acids, which strongly suggests an increased bacterial load within the host tissue, as well as hexosylceramides (HexCers) and galabiosyl-/lactosylceramides that appear to be correlated with the presence of HS. Our results demonstrate that NAPA-LDI-MSI is capable of imaging and potentially differentiating healthy and diseased human skin tissues based on changes in detected neutral lipid composition.


Assuntos
Hidradenite Supurativa/metabolismo , Lipidômica/métodos , Análise Serial de Tecidos/métodos , Humanos , Microscopia Eletrônica de Varredura , Silício/química , Pele/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Methods Mol Biol ; 1676: 217-231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986913

RESUMO

Recent technological advances have pushed the achievable spatial resolution for mass spectrometry imaging (MSI) to cellular and subcellular levels. Direct visualization of maize tissues by this tool has provided key insights into the localization of metabolites and lipids. This chapter outlines methodology for sample preparation, data acquisition, and data analysis of maize tissue sections using high-spatial resolution matrix-assisted laser desorption ionization (MALDI)-MSI, as well as the incorporation of a multi-resolution optical system, which allows for simple inter-conversion between different resolution setups (5, 10, and 50 µm imaging).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lipídeos/análise , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Frações Subcelulares/metabolismo , Zea mays/metabolismo , Redes e Vias Metabólicas , Zea mays/crescimento & desenvolvimento
16.
Methods Mol Biol ; 1203: 49-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25361666

RESUMO

Plant tissues present intriguing systems for study by mass spectrometry imaging, as they exhibit a complex metabolism and a high degree of spatial localization. This chapter presents a methodology for preparation of plant tissue sections for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) analysis and the use of a hybrid mass spectrometer for "multiplex" imaging. The multiplex method described here provides a wide range of analytical information, including high-resolution, accurate mass imaging and tandem MS scans for structural information, all within a single experiment. While this procedure was developed for plant tissues, it can be readily adapted for analysis of other sample types.


Assuntos
Imagem Molecular/métodos , Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Métodos Analíticos de Preparação de Amostras , Dessecação , Zea mays/citologia , Zea mays/metabolismo
17.
J Mass Spectrom ; 49(8): 737-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25044901

RESUMO

1,5-Diaminonaphthalene (DAN) has previously been reported as an effective matrix for matrix-assisted laser desorption ionization-mass spectrometry of phospholipids. In the current work, we investigate the use of DAN as a matrix for small metabolite analysis in negative ion mode. DAN was found to provide superior ionization to the compared matrices for MW < ~400 Da; however, 9-aminoacridine (9-AA) was found to be superior for a uridine diphosphate standard (MW 566 Da). DAN was also found to provide a more representative profile of a natural phospholipid mixture than 9-AA. Finally, DAN and 9-AA were applied for imaging of metabolites directly from corn leaf sections. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

18.
J Am Soc Mass Spectrom ; 24(6): 949-55, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23592078

RESUMO

We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS(3) imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.


Assuntos
Ânions/química , Cátions/química , Imagem Molecular/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Química Encefálica , Calibragem , Histocitoquímica , Camundongos , Fosfolipídeos/química
19.
J Mass Spectrom ; 48(1): 100-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23303752

RESUMO

We have previously developed in-parallel data acquisition of orbitrap mass spectrometry (MS) and ion trap MS and/or MS/MS scans for matrix-assisted laser desorption/ionization MS imaging (MSI) to obtain rich chemical information in less data acquisition time. In the present study, we demonstrate a novel application of this multiplex MSI methodology for latent fingerprints. In a single imaging experiment, we could obtain chemical images of various endogenous and exogenous compounds, along with simultaneous MS/MS images of a few selected compounds. This work confirms the usefulness of multiplex MSI to explore chemical markers when the sample specimen is very limited.


Assuntos
Dermatoglifia , Compostos Orgânicos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Suor/química , Espectrometria de Massas em Tandem/métodos , Ciências Forenses , Humanos , Modelos Químicos , Compostos Orgânicos/química , Triglicerídeos/análise , Triglicerídeos/química , Verapamil/análise , Verapamil/química
20.
Water Res ; 47(1): 439-48, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23141476

RESUMO

Fluoroquinolone (FQ) antibacterial compounds are frequently detected in the aquatic environment, and photodegradation is expected to play an important role in FQ fate in some sunlit surface waters. This study investigated the direct aquatic photochemistry of three FQs: norfloxacin, ofloxacin, and enrofloxacin. The direct photolysis rate of each drug exhibited strong pH dependence when exposed to simulated sunlight. For each FQ, direct photolysis rates and total light absorbance were used to calculate quantum yields for each of three environmentally relevant protonation states: a cationic, a zwitterionic, and an anionic form. In each case, quantum yields of the species varied significantly. The quantum yield for the zwitterionic form was 2-3 times higher than that of the anionic form and over an order of magnitude higher than that of the cationic form. Antibacterial activity assays were used to determine whether the loss of parent FQ due to photolysis led to loss of activity. Norfloxacin and ofloxacin photoproducts were found to be inactive, whereas enrofloxacin photoproducts were found to retain significant activity. These results are important for aiding in predictions of the potential impacts of FQs in surface waters.


Assuntos
Fluoroquinolonas/química , Norfloxacino/química , Ofloxacino/química , Fotólise , Antibacterianos/química , Enrofloxacina , Estrutura Molecular , Processos Fotoquímicos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa