Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Hyperthermia ; 39(1): 22-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34936844

RESUMO

PURPOSE: High-intensity focused ultrasound (HIFU) treatment requires prior evaluation of the HIFU transducer output. A method using micro-capsulated thermochromic liquid crystal (MTLC) to evaluate the temperature distribution in the media during HIFU exposure has been previously developed. However, the color-coded temperature range of commercial MTLC is approximately 10 °C, which is insufficient for temperature measurement for HIFU exposure. We created two layers of tissue-mimicking phantoms with different color-coded temperature ranges, and a new visualization method was developed by utilizing the axisymmetric pressure distribution of a HIFU focus. METHODS: A two-layer phantom with two sensitivity ranges was created. The HIFU transducer was set to align the focal point to the boundary between the two layers. Images of the upper and lower layers were flipped along the boundary between the two layers such that they overlapped with each other, assuming the pressure distribution of HIFU to be axisymmetric. RESULTS: The experimental and simulation results were compared to evaluate the accuracy of the phantom temperature measurement. The experimental time profile of the temperature and spatial distribution around the HIFU focus matched well with that of the simulation. However, there is room for improvement in the accuracy in the axial direction of HIFU focus. CONCLUSION: Users can apply our proposed method in clinical practice to promptly assess the output of the HIFU transducer before treatment.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Temperatura Corporal , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagens de Fantasmas , Temperatura , Transdutores
2.
Int J Med Robot ; 19(1): e2461, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36097703

RESUMO

BACKGROUND: Since most developed countries are facing an increase in the number of patients per healthcare worker due to a declining birth rate and an ageing population, relatively simple and safe diagnosis tasks may need to be performed using robotics and automation technologies, without specialists and hospitals. This study presents an automated robotic platform for remote auscultation, which is a highly cost-effective screening tool for detecting abnormal clinical signs. METHOD: The developed robotic platform is composed of a 6-degree-of-freedom cooperative robotic arm, LiDAR camera, and a spring-based mechanism holding an electric stethoscope. The platform enables autonomous stethoscope positioning based on external body information acquired using the LiDAR camera-based multi-way registration; the platform also ensures safe and flexible contact, maintaining the contact force within a certain range through the passive-actuated mechanism. RESULTS: Our preliminary results confirm that the robotic platform enables estimation of the landing positions required for cardiac examinations based on the depth and landmark information of the body surface. It also handles the stethoscope while maintaining the contact force without relying on the push-in displacement by the robotic arm. CONCLUSION: The developed robotic platform enables the estimation of the landing positions and handling the stethoscope while maintaining the contact force, which promises the potential of automatic remote auscultation.


Assuntos
Robótica , Humanos , Auscultação/métodos , Automação , Pessoal de Saúde
3.
Int J Comput Assist Radiol Surg ; 18(8): 1511-1520, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36746880

RESUMO

PURPOSE: In telemedicine such as remote auscultation, patients themselves or non-medical people such as patient's parents need to place the stethoscope on their body surface in appropriate positions instead of the physicians. Meanwhile, as the position depends on the individual difference of body shape, there is a demand for the efficient navigation to place the medical equipment. METHODS: In this paper, we have proposed a non-rigid iterative closest point (ICP)-based registration method for localizing the auscultation area considering the individual difference of body surface. The proposed system provides the listening position by applying the body surface registration between the patient and reference model with the specified auscultation area. Our novelty is that selecting the utilized reference model similar to the patient body among several types of the prepared reference model increases the registration accuracy. RESULTS: Simulation results showed that the registration error increases due to deviations of the body shape between the targeted models and reference model. Experimental results demonstrated that the proposed non-rigid ICP registration is capable of estimating the auscultation area with average error 5-19 mm when selecting the most similar reference model. The statistical analysis showed high correlation between the registration accuracy and similarity of the utilized models. CONCLUSION: The proposed non-rigid ICP registration is a promising new method that provides accurate auscultation area takes into account the individual difference of body shape. Our hypothesis that the registration accuracy depends on the similarity of both body surfaces is validated through simulation study and human trial.


Assuntos
Algoritmos , Individualidade , Humanos , Simulação por Computador
4.
J Med Ultrason (2001) ; 48(2): 123-135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33796908

RESUMO

PURPOSE: In this study, the robustness and feasibility of a noise elimination method using continuous wave response of therapeutic ultrasound signals were investigated when tissue samples were moved to simulate the respiration-induced movements of the different organs during actual high-intensity focused ultrasound (HIFU) treatment. In addition to that, the failure conditions of the proposed algorithm were also investigated. METHODS: The proposed method was applied to cases where tissue samples were moved along both the lateral and axial directions of the HIFU transducer to simulate respiration-induced motions during HIFU treatment, and the noise reduction level was investigated. In this experiment, the speed of movement was increased from 10 to 40 mm/s to simulate the actual movement of the tissue during HIFU exposure, with the intensity and driving frequency of HIFU set to 1.0-5.0 kW/cm2 and 1.67 MHz, respectively. To investigate the failure conditions of the proposed algorithm, the proposed method was applied with the HIFU focus located at the boundary between the phantom and water to easily cause cavitation bubbles. The intensity of HIFU was set to 10 kW/cm2. RESULTS: Almost all HIFU noise was constantly able to be eliminated using the proposed method when the phantom was moved along the lateral and axial directions during HIFU exposure. The noise reduction level (PRL in this study) at an intensity of 1.0, 3.0, and 5.0 kW/cm2 was in the range of 28-32, 38-40, and 42-45 dB, respectively. On the other hand, HIFU noise was not basically eliminated during HIFU exposure after applying the proposed method in the case of cavitation generation at the HIFU focus. CONCLUSIONS: The proposed method can be applicable even if homogeneous tissues or organs move axially or laterally to the direction of HIFU exposure because of breathing. A condition under which the proposed algorithm failed was when instantaneous tissue changes such as cavitation bubble generation occurred in the tissue, at which time the reflected continuous wave response became less steady.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Ultrassom/métodos , Algoritmos , Estudos de Viabilidade , Humanos , Movimento (Física) , Imagens de Fantasmas , Transdutores
5.
Ultrasonics ; 114: 106394, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33657511

RESUMO

In high-intensity focused ultrasound (HIFU) treatment, a method that monitors tissue changes while irradiating therapeutic ultrasound is needed to detect changes in the order of milliseconds due to thermal coagulation and the presence of cavitation bubbles. The new filtering method in which only the HIFU noise was reduced while the tissue signals remained intact was proposed in the conventional HIFU exposure in our preliminary study. However, HIFU was irradiated perpendicular to the direction of the imaging ultrasound in the preliminary experiment, which was believed to be impractical. This study investigated the efficacy of the proposed method a parallel setup, in which both HIFU and imaging beams have the same axis just as in a practical application. In addition, this filtering algorithm was applied to the "Trigger HIFU" sequence in which ultrasound-induced cavitation bubbles were generated in the HIFU focal region to enhance heating. In this setup and sequence, HIFU noise level was increased and the summation or difference tone induced by the interaction of HIFU waves with the imaging pulse has the potential to affect this proposed method. Ex-vivo experiments proved that the HIFU noise was selectively eliminated by the proposed filtering method in which chaotic acoustic signals were emitted by the cavitation bubbles at the HIFU focus. These results suggest that the proposed method was practically efficient for monitoring tissue changes in HIFU-induced cavitation bubbles.

6.
Artigo em Inglês | MEDLINE | ID: mdl-24111278

RESUMO

We histologically investigated tissue fractures and deformations caused by ex vivo needle insertions. The tissue was formalin-fixed while the needle remained in the tissue. Following removal of the needle, the tissue was microtomed, stained, and observed microscopically. This method enabled observations of cellular and tissular conditions where deformations caused by needle insertions were approximately preserved. For this study, our novel method presents preliminary findings related with tissue fractures and the orientation of needle blade relative to muscle fibers. When the needle blade was perpendicular to the muscle fiber, transfiber fractures and relatively large longitudinal deformations occurred. When the needle blade was parallel to the muscle fiber, interfiber fractures and relatively small longitudinal deformations occurred. This made a significant difference in the resistance force of the needle insertions.


Assuntos
Modelos Biológicos , Músculo Esquelético/patologia , Agulhas/efeitos adversos , Animais , Galinhas , Injeções Intramusculares/efeitos adversos
7.
Artigo em Inglês | MEDLINE | ID: mdl-24111276

RESUMO

We validated the effectiveness of a coaxial needle insertion assistant under the condition that the needles were laterally deformed. The coaxial needle insertion assistant separates the cutting force at the needle tip from shear friction on the needle shaft, and haptically display it to a user in order to assists her/his perception during epidural puncture. An outer needle covers the side of an inner needle, preventing the shear friction from acting on the inner needle. However when the needles are laterally deformed and make contact to each other, it is concerned that the effect of the separation is degraded. In this paper, the users punctured an artificial tissue with variable insertion angles, so that the needle is intentionally laterally deformed. The overshoot and user confidence in detecting puncture was examined.


Assuntos
Movimento (Física) , Agulhas , Robótica/instrumentação , Robótica/métodos , Humanos , Injeções Epidurais/instrumentação , Injeções Epidurais/métodos
8.
IEEE Trans Biomed Eng ; 60(2): 379-89, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23193302

RESUMO

Many medical procedures involving needle insertion into soft tissues, such as anesthesia, biopsy, brachytherapy, and placement of electrodes, are performed without image guidance. In such procedures, haptic detection of changing tissue properties at different depths during needle insertion is important for needle localization and detection of subsurface structures. However, changes in tissue mechanical properties deep inside the tissue are difficult for human operators to sense, because the relatively large friction force between the needle shaft and the surrounding tissue masks the smaller tip forces. A novel robotic coaxial needle insertion assistant, which enhances operator force perception, is presented. This one-degree-of-freedom cable-driven robot provides to the operator a scaled version of the force applied by the needle tip to the tissue, using a novel design and sensors that separate the needle tip force from the shaft friction force. The ability of human operators to use the robot to detect membranes embedded in artificial soft tissue was tested under the conditions of 1) tip force and shaft force feedback, and 2) tip force only feedback. The ratio of successful to unsuccessful membrane detections was significantly higher (up to 50%) when only the needle tip force was provided to the user.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Agulhas , Robótica/instrumentação , Processamento de Sinais Assistido por Computador , Fenômenos Biomecânicos , Encéfalo/fisiologia , Simulação por Computador , Retroalimentação , Humanos , Modelos Biológicos , Pressão , Cirurgia Assistida por Computador
9.
Artigo em Inglês | MEDLINE | ID: mdl-22255081

RESUMO

During needle insertion in soft tissue, detection of change in tissue properties is important both for diagnosis to detect pathological tissue and for prevention to avoid puncture of important structures. The presence of a membrane located deep inside the tissue results in a relatively small force variation at the needle tip that can be masked by relatively large friction force between the needle shaft and the surrounding tissue. Also, user perception of force can be limited due to the overall small force amplitude in some applications (e.g. brain surgery). A novel robotic coaxial needle insertion assistant was developed to enhance operator force perception. The coaxial needle separates the cutting force at the needle tip from shear friction on the needle shaft. The assistant is force controlled (admittance control), providing the operator with force feedback that is a scaled version of the force applied by the needle tip to the tissue. The effectiveness of the assistant in enhancing the detection of different tissue types was tested experimentally. Users were asked to blindly insert a needle into artificial tissues with membranes at various depths under two force feedback conditions: (1) shaft and tip force together, and (2) only tip force. The ratio of successful to unsuccessful membrane detection was significantly higher when only the needle tip force is displayed to the user. The system proved to be compliant with the clinical applications requirements.


Assuntos
Agulhas , Pressão , Desenho de Equipamento , Humanos , Robótica
10.
Artigo em Inglês | MEDLINE | ID: mdl-19963883

RESUMO

In this paper, we report results from positioning repeatability tests and kinematic calibration of our magnetic resonance imaging (MRI)-compatible micromanipulator. This manipulator provides medical and biological scientists with the ability to concurrently manipulate and observe micrometer size objects inside an MRI-gantry. We have already reported on its design, implementation, and the results of preliminary testing of MRI compatibility. Here we test positioning repeatability, which is essential for micromanipulation. The results show that the manipulator has high repeatability (0.7 microm in longitude and 3.0 microm in latitude). In addition, we performed a calibration of kinematics and discussed the experimental result in comparison with the theoretical model. The results show that its workspace is 50-70% smaller than theoretically expected. The results also show that the absolute positioning errors are 16, 9, 5 microm in x, y, and z directions, respectively.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Micromanipulação/instrumentação , Fenômenos Biomecânicos , Calibragem , Reprodutibilidade dos Testes
11.
Artigo em Inglês | MEDLINE | ID: mdl-18001990

RESUMO

In this paper, we present a magnetic resonance imaging (MRI)-compatible micromanipulator, which can be employed to provide medical and biological scientists with the ability to concurrently manipulate and observe micron-scale objects inside an MRI gantry. The micromanipulator formed a two-finger micro hand, and it could handle a micron-scale object using a chopstick motion. For performing operations inside the MRI gantry in a manner such that the MRI is not disturbed, the system was designed to be nonmagnetic and electromagnetically compatible with the MRI. The micro-manipulator was implemented with piezoelectric transducers (PZT) as actuators for micro-motion, strain gauges as sensors for closed-loop control, and a flexure parallel mechanism made of acrylic plastic. Its compatibility with a 2-Tesla MRI was preliminarily tested by checking if the MRI obtained with the micromanipulator were similar to those obtained without the micromanipulator. The tests concluded that the micromanipulator caused no distortion but small artifacts on the MRI. The signal-to-noise ratio (SNR) of the MRI significantly deteriorated mainly due to the wiring of the micromanipulator. The MRI caused noise of the order of ones of volts in the strain amplifier.


Assuntos
Imageamento por Ressonância Magnética , Micromanipulação/instrumentação , Micromanipulação/métodos , Miniaturização/instrumentação , Miniaturização/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa