Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 32(9): 1893-1899, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31433626

RESUMO

In previous studies, we showed that the topical application of dibenzo[a,l]pyrene (DB[a,l]P), also known as dibenzo[def,p]chrysene, to the oral cavity of mice induced oral squamous cell carcinoma. We also showed that dA and dG adducts likely account for most of the mutagenic activity of DB[a,l]P in the oral tissues in vivo. Here we report for the first time that the oral treatment of lacI mice with a combination of tobacco smoke carcinogens, DB[a,l]P and N'-nitrosonornicotine (NNN), induces a higher fraction of mutations than expected from a simple sum of their induced individual mutation fractions, and a change in the mutational profile compared with that expected from the sum of the individual agents. The mutational profile of the combination of agents resembled that of the P53 gene in human head and neck cancers more than that of either of the individual agents, in that the percentage of the major class of mutations (GC > AT transitions) is similar to that seen in the P53 gene. A preliminary study was performed to understand the origin of the unexpected mutagenesis observations by measuring specific DNA adducts produced by both NNN and DB[a,l]P in human oral leukoplakia cells. No significant differences in the expected and observed major adduct levels from either agent were observed between individual or combined treatments, suggesting that additional adducts are important in mutagenesis induced by the mixture. Taken together, the above observations support the use of this animal model not only to investigate tobacco smoke-induced oral cancer but also to study chemoprevention.


Assuntos
Benzopirenos/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Leucoplasia Oral/genética , Nitrosaminas/toxicidade , Neoplasias da Língua/genética , Animais , Linhagem Celular Tumoral , DNA/efeitos dos fármacos , DNA/genética , Adutos de DNA/metabolismo , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mutagênese/efeitos dos fármacos , Mutação , Língua/efeitos dos fármacos
2.
Chem Res Toxicol ; 30(12): 2159-2164, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29068672

RESUMO

Black raspberries (BRB) have been shown to inhibit carcinogenesis in a number of systems, with most studies focusing on progression. Previously we reported that an anthocyanin-enriched black raspberry extract (BE) enhanced repair of dibenzo-[a,l]-pyrene dihydrodiol (DBP-diol)-induced DNA adducts and inhibited DBP-diol and DBP-diolepoxide (DBPDE)-induced mutagenesis in a lacI rat oral fibroblast cell line, suggesting a role for BRB in the inhibition of initiation of carcinogenesis. Here we extend this work to protection by BE against DNA adduct formation induced by dibenzo-[a,l]-pyrene (DBP) in a human oral leukoplakia cell line (MSK) and to a second carcinogen, UV light. Treatment of MSK cells with DBP and DBPDE led to a dose-dependent increase in DBP-DNA adducts. Treatment of MSK cells with BE after addition of DBP reduced levels of adducts relative to cells treated with DBP alone, and treatment of rat oral fibroblasts with BE after addition of DBPDE inhibited mutagenesis. These observations showed that BE affected repair of DNA adducts and not metabolism of DBP. As a proof of principle we also tested aglycones of two anthocyanins commonly found in berries, delphinidin chloride and pelargonidin chloride. Delphinidin chloride reduced DBP-DNA adduct levels in MSK cells, while PGA did not. These results suggested that certain anthocyanins can enhance repair of bulky DNA adducts. As DBP and its metabolites induced formation of bulky DNA adducts, we investigated the effects of BE on genotoxic effects of a second carcinogen that induces bulky DNA damage, UV light. UV irradiation produced a dose-dependent increase in cyclobutanepyrimidine dimer levels in MSK cells, and post-UV treatment with BE resulted in lower cyclobutanepyrimidine dimer levels. Post-UV treatment of the rat lacI cells with BE reduced UV-induced mutagenesis. Taken together, the results demonstrate that BE extract reduces bulky DNA damage and mutagenesis and support a role for BRB in the inhibition of initiation of carcinogenesis.


Assuntos
DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Leucoplasia Oral/tratamento farmacológico , Extratos Vegetais/farmacologia , Rubus/química , Animais , Benzopirenos/farmacologia , Células Cultivadas , Adutos de DNA/biossíntese , Adutos de DNA/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Leucoplasia Oral/genética , Leucoplasia Oral/patologia , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Relação Estrutura-Atividade , Raios Ultravioleta
3.
Int J Cancer ; 133(6): 1300-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23483552

RESUMO

We previously reported that dibenzo[a,l]pyrene (DB[a,l]P), the most potent known environmental carcinogen among polycyclic aromatic hydrocarbons (PAH) congeners, is carcinogenic in the oral tissues of mice. We have now developed a new mouse model which employs the oral application of the fjord region diol epoxide, (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DB[a,l]PDE), a metabolite of the tobacco smoke constituent DB[a,l]P, and we show its specific induction of oral squamous cell carcinoma (OSCC) in both tongue and other oral tissues. Groups of B6C3F1 mice (20/group) received 6 or 3 nmol of (±)-anti-DB[a,l]PDE administered into the oral cavity; 3 times per week for 38 weeks. Additional groups received the vehicle alone or were left untreated. Mice were sacrificed 42 weeks after the first carcinogen administration. The high dose induced 74 and 100% OSCC in the tongue and other oral tissues, respectively; the corresponding values at the lower dose were 45 and 89%. Using immunohistochemistry, we showed that DB[a,l]PDE resulted in overexpression of p53 and COX-2 proteins in malignant tissues when compared to normal oral tissues and tongues. Consistent with the carcinogenicity, we demonstrated powerful mutagenicity in cII gene in B6C3F1 (Big Blue) mouse tongue. The mutational profile in lacI reporter gene is similar to those detected in human head and neck cancer, and p53 mutations were observed in mouse oral tumor tissues. Taken together, we conclude that the formation of diol epoxides plays a major role among the mechanisms by which DB[a,l]P exerts its oral mutagenicity and tumorigenicity.


Assuntos
Benzopirenos/toxicidade , Carcinógenos Ambientais/toxicidade , Neoplasias Bucais/induzido quimicamente , Nicotiana/química , Fumaça/análise , Animais , Feminino , Genes p53 , Imuno-Histoquímica , Camundongos , Mutação
4.
Chem Res Toxicol ; 26(4): 547-54, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23461617

RESUMO

The mechanisms that can account for the remarkable mammary carcinogenicity of the environmental pollutant 6-nitrochrysene (6-NC) in the rat remain elusive. In our previous studies, we identified several 6-NC-derived DNA adducts in the rat mammary gland; one major adduct was derived from (±)-trans-1,2-dihydroxy-1,2-dihydro-6-nitrochrysene (1,2-DHD-6-NC). In the present study, we resolved the racemic (±)-1,2-DHD-6-NC into (-)-[R,R]- and (+)-[S,S]-1,2-DHD-6-NC and compared their in vivo mutagenicity and carcinogenicity in the mammary glands of female transgenic (BigBlue F344 × Sprague-Dawley)F1 rats harboring lacI/cII and Sprague-Dawley rats, respectively. Both [R,R]- and [S,S]-isomers exerted similar mutagenicity and carcinogenicity but were less potent than 6-NC. Additional in vivo and in vitro studies were then performed to explore possible mechanisms that can explain the higher potency of 6-NC than 1,2-DHD-6-NC. Using ELISA, we found that neither 6-NC nor 1,2-DHD-6-NC increased the levels of several inflammatory cytokines in plasma obtained from rats 24 h after treatment. In MCF-7 cells, as determined by immunoblotting, the effects of 6-NC and 1,2-DHD-6-NC on protein expression (p53, Akt, p38, JNK, c-myc, bcl-2, PCNA, and ERß) were comparable; however, the expressions of AhR and ERα proteins were decreased by 6-NC but not 1,2-DHD-6-NC. The expression of both receptors was decreased in mammary tissues of rats treated with 6-NC. Our findings suggest that the differential effects of 6-NC and 1,2-DHD-6-NC on AhR and ERα could potentially account for the higher carcinogenicity of 6-NC in the rat mammary gland.


Assuntos
Carcinógenos/toxicidade , Crisenos/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias Mamárias Experimentais/induzido quimicamente , Animais , Citocinas/sangue , Adutos de DNA , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Int J Cancer ; 130(12): 2783-90, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21815141

RESUMO

Cancer of the oral cavity is a serious disease, affecting about 30,000 individuals in US annually. There are several animal models of oral cancer, but each has certain disadvantages. As a new model, we investigated whether topical application of the tobacco smoke carcinogen, dibenzo[a,l]pyrene (DB[a,l]P) is mutagenic and carcinogenic in the oral cavity of the B6C3F1 lacI and B6C3F1 mouse, respectively. B6C3F1 lacI mice received DB[a,l]P (0, 3, 6, 12 nmol) 3× per week. B6C3F1 mice received the same doses and also 24 nmol. At 38 weeks mutagenesis was measured in oral tissues in lacI mice. For the high dose group, the mutant fraction (MF) in upper mucosa and tongue increased about twofold relative to that in vehicle-alone. The increases were statistically significant. The mutational profile in the DB[a,l]P-induced mutants was compared with that induced by benzo[a]pyrene (BaP) in oral tissue. BaP is mutagenic in many tissues when administered by gavage. The mutational profile for DB[a,l]P was more similar to that reported for p53 mutations in head and neck cancers than was that of BaP. At 47 weeks, oral squamous cell carcinomas (OSCC) were found in 31% of the high-dose B6C3F1 group. Elevations of p53 and COX-2 protein were observed in tumor and dysplastic tissue. As DB[a,l]P induces mutations and tumors in the oral cavity, and has a mutational profile in oral tissue similar to that found in p53 in human OSCC, the treatment protocol described here may represent a new and relevant model for cancer of the oral cavity.


Assuntos
Benzopirenos/toxicidade , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Modelos Animais de Doenças , Neoplasias Bucais , Mutagênese , Animais , Benzo(a)pireno/toxicidade , Testes de Carcinogenicidade , Carcinoma de Células Escamosas , Ciclo-Oxigenase 2/metabolismo , Feminino , Camundongos , Boca/efeitos dos fármacos , Boca/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteína Supressora de Tumor p53/metabolismo
6.
Mutat Res ; 742(1-2): 92-5, 2012 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-22155125

RESUMO

Bladder cancer is one of the few cancers that have been linked to carcinogens in the environment and tobacco smoke. Of the carcinogens tested in mouse chemical carcinogenesis models, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is one that reproducibly causes high-grade, invasive cancers in the urinary bladder, but not in any other tissues. However, the basis for such a high-level tissue-specificity has not been explored. Using mutagenesis in lacI (Big Blue™) mice, we show here that BBN is a potent mutagen and it causes high-level of mutagenesis specifically in the epithelial cells (urothelial) of the urinary bladder. After a 2-6-week treatment of 0.05% BBN in the drinking water, mutagenesis in urothelial cells of male and female mice was about two orders of magnitude greater than the spontaneous mutation background. In contrast, mutagenesis in smooth muscle cells of the urinary bladder was about five times lower than in urothelial tissue. No appreciable increase in mutagenesis was observed in kidney, ureter, liver or forestomach. In lacI (Big Blue™) rats, BBN mutagenesis was also elevated in urothelial cells, albeit not nearly as profoundly as in mice. This provides a potential explanation as to why rats are less prone than mice to the formation of aggressive form of bladder cancer induced by BBN. Our results suggest that the propensity to BBN-triggered mutagenesis of urothelial cells underlies its heightened susceptibility to this carcinogen and that mutagenesis induced by BBN represents a novel model for initiation of bladder carcinogenesis.


Assuntos
Butilidroxibutilnitrosamina/toxicidade , Carcinógenos/toxicidade , Poluentes Ambientais/toxicidade , Mutagênicos/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Urotélio/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Ratos
7.
Artigo em Inglês | MEDLINE | ID: mdl-31373329

RESUMO

E-cigarette aerosol contains lower levels of most known carcinogens than tobacco smoke, but many users of e-cigarettes are also smokers, and these individuals may be vulnerable to possible promoting and/or cocarcinogenic effects of e-cigarettes. We investigated the possibility that a condensate of e-cigarette aerosol (EAC) enhances the metabolism of the tobacco carcinogen, benzo(a)pyrene (BaP), to genotoxic products in a human oral keratinocyte cell line. Cells were pretreated with EAC from two popular e-cigs and then with BaP. Metabolism to its ultimate carcinogenic metabolite, anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro B[a]P (BPDE), was assayed by measuring isomers of its spontaneous hydrolysis products, BaP tetrols. The pretreatment of cells with EAC enhanced the rate of BaP tetrol formation several fold. Pretreatment with the e-liquid resulted in a smaller enhancement. The treatment of cells with EAC induced CYP1A1/1B1 mRNA and protein. The enhancement of BaP tetrol formation was inhibited by the aryl hydrocarbon receptor (AhR) inhibitor, α-napthoflavone, indicating EAC likely induces CYP1A1/1B1 and enhances BaP metabolism by activating the AhR. To our knowledge, this is first report demonstrating that e-cigarettes can potentiate the genotoxic effects of a tobacco smoke carcinogen.


Assuntos
Aerossóis/efeitos adversos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Benzo(a)pireno/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Mutagênicos/efeitos adversos , Receptores de Hidrocarboneto Arílico/genética , Fumaça/efeitos adversos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo
8.
Cancer Prev Res (Phila) ; 11(3): 157-164, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158340

RESUMO

We previously showed that metabolic activation of the environmental and tobacco smoke constituent dibenzo[a,l]pyrene (DB[a,l]P) to its active fjord region diol epoxide (DB[a,l]PDE) is required to induce DNA damage, mutagenesis, and squamous cell carcinoma (SCC) in the mouse oral cavity. In contrast to procarcinogens, which were employed previously to induce SCC, DB[a,l]PDE does not require metabolic activation to exert its biological effects, and thus, this study was initiated to examine, for the first time, whether black raspberry powder (BRB) inhibits postmetabolic processes, such as DNA damage, mutagenesis, and tumorigenesis. Prior to long-term chemoprevention studies, we initially examined the effect of BRB (5% added to AIN-93M diet) on DNA damage in B6C3F1 mice using LC/MS-MS and on mutagenesis in the lacI gene in the mouse oral cavity. We showed that BRB inhibited DB[a,l]PDE-induced DNA damage (P < 0.05) and mutagenesis (P = 0.053) in the oral cavity. Tumor incidence in the oral cavity (oral mucosa and tongue) of mice fed diet containing 5% BRB was significantly (P < 0.05) reduced from 93% to 66%. Specifically, the incidence of benign tumor was significantly (P < 0.001) reduced from 90% to 31% (62% to 28% in the oral cavity and 28% to 2% in the tongue), a nonsignificant reduction of malignant tumors from 52% to 45%. Our preclinical findings demonstrate for the first time that the chemopreventive efficacy of BRB can be extended to direct-acting carcinogens that do not require phase I enzymes and is not just limited to procarcinogens. Cancer Prev Res; 11(3); 157-64. ©2017 AACR.


Assuntos
Carcinogênese/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Boca/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubus/química , Animais , Benzopirenos , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Compostos de Epóxi , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Boca/metabolismo , Boca/patologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Neoplasias Bucais/prevenção & controle , Fitoterapia
9.
Carcinogenesis ; 28(11): 2391-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17602172

RESUMO

The dietary and environmental agent, 6-nitrochrysene (6-NC) is a powerful mammary carcinogen and mutagen in rats. It is known to be metabolized by ring-oxidation, nitro-reduction and a combination of the two pathways. In order to determine the ultimate mutagenic metabolites, we have compared the previously determined mutational profile of 6-NC in rat mammary gland [T. Boyiri, et al. (2004) Carcinogenesis, 25, 637-643] with that of five of its known metabolites in the cII gene of lacI mammary epithelial cells in vitro. In vivo, 6-NC gives rise to three major mutations, AT > GC, AT > TA and GC > TA (in decreasing order) which comprise >70% of the mutations. The metabolite whose mutational profile was most similar to that of 6-NC in vivo was trans-1,2-dihydroxy-1,2-dihydro-N-hydroxy-6-aminochrysene (1,2-DHD-6-NHOH-C) which arises from both ring-oxidation and nitro-reduction. However, metabolites arising from either ring-oxidation or nitro-reduction alone exhibited some similarities to mutational profile of 6-NC. These results, taken in conjunction with previous data showing that the major DNA adducts in mammary tissue of rats treated with 6-NC are products of the reaction of 1,2-DHD-6-NHOH-C with guanine and adenine, make a strong case that 1,2-DHD-6-NHOH-C is the ultimate genotoxic metabolite from 6-NC.


Assuntos
Crisenos/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Eletroforese Capilar , Células Epiteliais/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/citologia , Reação em Cadeia da Polimerase , Ratos
10.
Mutat Res ; 634(1-2): 146-55, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17720616

RESUMO

Previously we showed that the organoselenium compound, 1,4-phenylenebis(methylene)selenocyanate (p-XSC)(1) inhibits 4-nitroquinoline-N-oxide (4-NQO)-induced tongue tumorigenesis in Fisher rats. Here we investigate possible mechanisms of this inhibition by monitoring mutagenesis and p53 protein levels in lacI and conventional Fisher rats treated with: (1) a carcinogenic dose of 4-NQO for 10 weeks in drinking water, (2) 4-NQO+p-XSC (15 ppm as selenium), and (3) 4-NQO followed by p-XSC. For mutagenesis studies, rats were euthanized at 7, 12 or 23 weeks after the start of 4-NQO. For studies on p53 levels, rats were euthanized at 11, 15 and 23 weeks. Appropriate controls were also monitored. In the 4-NQO-alone groups, the mutant fraction (MF) in the cII gene in tongue increased at least 50x background level. The MF (in units of mutants/10(5) plaque forming units) for the 7, 12, and 23 weeks 4-NQO groups were respectively, 184 +/- 88, 237 +/- 105, and 329 +/- 110. Thus, mutagenesis increased with length of exposure and post-treatment time. p-XSC modestly (ca. 15-30%) inhibited mutagenesis under all conditions. The inhibition reached significance at the last time point. When p-XSC was administered after 4-NQO, the MF was also modestly reduced. In 4-NQO-alone animals, levels of p53 in tongue (determined by Western blotting) were 1, 1.5 and 2.4 control levels at 10, 15 and 23 weeks, respectively. In the p-XSC+4-NQO group, the enhancement in p53 levels by 4-NQO treatment was decreased about 90% at 15 weeks and 45% (P<0.05) at 23 weeks, and by slightly smaller percentages in corresponding post-treatment groups. p-XSC alone did not alter p53 levels. As p53 levels generally increase in response to DNA damage, these results suggest that p-XSC reduces 4-NQO-induced DNA damage, resulting in reduced 4-NQO-induced mutagenesis and carcinogenesis. However, the fact that p-XSC is also effective when administered after 4-NQO, suggests additional mechanisms of inhibition exist.


Assuntos
Carcinógenos/toxicidade , Compostos Organosselênicos/farmacologia , Quinolonas/toxicidade , Neoplasias da Língua/induzido quimicamente , Proteína Supressora de Tumor p53/metabolismo , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Animais Geneticamente Modificados , Anticarcinógenos , Mutagênicos/toxicidade , Ratos , Ratos Endogâmicos F344 , Língua
12.
Cancer Prev Res (Phila) ; 9(8): 704-12, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27267891

RESUMO

Effects of black raspberry (BRB) extract and protocatechuic acid (PCA) on DNA adduct formation and mutagenesis induced by metabolites of dibenzo[a,l]pyrene (DBP) were investigated in rat oral fibroblasts. The DBP metabolites, (±)-anti-11,12-dihydroxy-11,12,-dihydrodibenzo[a,l]pyrene (DBP-diol) and 11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) induced dose-dependent DNA adducts and mutations. DBPDE was considerably more potent, whereas the parent compound had no significant effect. Treatment with BRB extract (BRBE) and PCA resulted in reduced DBP-derived DNA adduct levels and reduced mutagenesis induced by DBP-diol, but only BRBE was similarly effective against (DBPDE). BRBE did not directly inactivate DBPDE, but rather induced a cellular response-enhanced DNA repair. When BRBE was added to cells 1 day after the DBP-diol, the BRBE greatly enhanced removal of DBP-derived DNA adducts. As oxidative stress can contribute to several stages of carcinogenesis, BRBE and PCA were investigated for their abilities to reduce oxidative stress in a human leukoplakia cell line by monitoring the redox indicator, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF) in cellular and acellular systems. BRBE effectively inhibited the oxidation, but PCA was only minimally effective against H2DCF. These results taken together provide evidence that BRBE and PCA can inhibit initiation of carcinogenesis by polycyclic aromatic hydrocarbons; and in addition, BRBE reduces oxidative stress. Cancer Prev Res; 9(8); 704-12. ©2016 AACR.


Assuntos
Carcinogênese/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Boca/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Rubus/química , Animais , Benzopirenos/toxicidade , Carcinogênese/genética , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Neoplasias Bucais/prevenção & controle , Mutagênese/efeitos dos fármacos , Neoplasias Faríngeas/prevenção & controle , Ratos , Fatores de Tempo
13.
Cancer Lett ; 187(1-2): 41-6, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12359349

RESUMO

Bleomycin and ferric nitrilotriacetate (Fe-NTA) give rise to reactive oxygen species (ROS). Bleomycin was mutagenic in lacZ mouse kidney, liver and lung, but Fe-NTA was non-mutagenic in kidney and lung and marginally mutagenic in liver. Fe-NTA-treatment led to an increase in 8-hydroxydeoxyguanosine levels in kidney and liver, while the corresponding levels in bleomycin-treated mice were if anything, lower than those for bleomycin. It appears that factors other than simply the ability to generate ROS, play a role in mutagenesis by these compounds.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Carcinógenos/toxicidade , Desoxiguanosina/análogos & derivados , Compostos Férricos/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Animais , DNA/metabolismo , Dano ao DNA , Desoxiguanosina/metabolismo , Rim/metabolismo , Óperon Lac/fisiologia , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Mutat Res ; 554(1-2): 185-92, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15450417

RESUMO

The mutational spectrum of bleomycin was compared with the spontaneous mutational spectrum in lacZ mouse kidney. Mice were treated with four 20 mg/kg of doses of bleomycin over a two-week period, leading to a mutant fraction several times greater than that of controls. The major class of bleomycin-induced mutations consisted of small deletions, in particular -1 deletions at AT base pairs and hot spots for deletions at 5'-GTC-3' sequences. Smaller, but significant fractions of GC > AT followed by GC > TA substitutions were also observed. In untreated mice, the major class of mutations consisted of GC > AT substitutions followed by GC > TA mutations, and a much smaller fraction of deletions. Other than the specificity of bleomycin for AT base pairs and the 5'-GTC-3' hotspots, the mutational spectrum of bleomycin in mice is similar to that reported for ionizing radiation. However, bleomycin initially mediates the formation of oxidized DNA via reduction of molecular oxygen, as opposed to the radiolysis of water. In this respect mutagenesis induced by bleomycin may be more similar to that induced by endogenous reactive oxygen species (ROS) than mutagenesis induced by ionizing radiation. If bleomycin-induced mutagenesis is an appropriate model for mutagenesis induced by ROS, then, based on the difference between the mutational spectrum of bleomycin and spontaneous mutagenesis, the latter appears not to result predominantly from ROS, at least in mouse kidney.


Assuntos
Bleomicina/farmacologia , Óperon Lac , Modelos Genéticos , Mutação , Espécies Reativas de Oxigênio , Animais , Sequência de Bases , Primers do DNA , Masculino , Camundongos , Camundongos Mutantes
15.
Mutat Res ; 559(1-2): 199-210, 2004 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15066587

RESUMO

We have studied the effects of three chemopreventive agents alone or in binary combinations on benzo[a]pyrene (BaP)-induced mutagenesis in the oral cavity and esophagus of lacZ mice using galE(-) selection. The mice were fed diets supplemented with 1,4-phenylenebis(methylene)selenocyanate (p-XSC) at 2.5 and 10 ppm Se, selenium-enriched yeast (SeY) at 2.5 and 10 ppm Se, and 3H-1,2-dithiole-3-thione (D3T) at 65 and 250 ppm, for 6 weeks. Two weeks after the start of the dietary regimen, mice were gavaged with five doses of 125 mg/kg BaP over 2 weeks, and the experiment was terminated 2 weeks later. Mutagenesis was measured in tongue, other pooled oral tissues (OTs), and esophagus. In mice treated with BaP alone, mutagenesis in the above tissues was in the range of 21-32 mutants/10(5)pfu (ca. 6-10 background levels for the corresponding tissues). p-XSC modestly inhibited mutagenesis (10-33% inhibition) in all tissues, but statistical significance was only observed at the low dose in esophagus, and pooled OT. SeY was not inhibitory alone. Greater inhibitory effects were observed with D3T, and inhibition was statistically significant at the high dose in tongue and esophagus (ca. 33%). Two combinations of low doses of the inhibitors were tested, and the D3T + SeY mix was most effective, leading to statistically significant inhibition in all three tissues (ca. 30-40% inhibition). The mixture D3T + p-XSC was of similar effectiveness as the low dose of D3T alone. This study combined with those previously done in our laboratory demonstrates effectiveness of D3T and to a lesser extent, p-XSC in the inhibition of mutagenesis, and provides support for the use of certain combinations of inhibitors as a means to increase effectiveness and reduce the dose of chemopreventive agents.


Assuntos
Antimutagênicos/farmacologia , Esôfago/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Compostos Organosselênicos/toxicidade , Selênio/farmacologia , Tionas/toxicidade , Tiofenos/toxicidade , Língua/efeitos dos fármacos , Animais , Benzo(a)pireno , DNA/isolamento & purificação , Combinação de Medicamentos , Masculino , Camundongos , Testes de Mutagenicidade , Selênio/metabolismo , Leveduras/metabolismo
16.
Cancer Prev Res (Phila) ; 5(4): 593-602, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22374940

RESUMO

The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic helix-loop-helix family of transcription factors, plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. In the upper aerodigestive tract of humans, tobacco smoke, a source of PAHs, activates the AhR leading to increased expression of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. Inhibitors of Hsp90 ATPase cause a rapid decrease in levels of AhR, an Hsp90 client protein, and thereby block PAH-mediated induction of CYP1A1 and CYP1B1. The main objective of this study was to determine whether Zyflamend, a polyherbal preparation, suppressed PAH-mediated induction of CYP1A1 and CYP1B1 and inhibited DNA adduct formation and mutagenesis. We also investigated whether carnosol, one of multiple phenolic antioxidants in Zyflamend, had similar inhibitory effects. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) and skin (HaCaT) with benzo[a]pyrene (B[a]P), a prototypic PAH, induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Both Zyflamend and carnosol suppressed these effects of B[a]P. Notably, both Zyflamend and carnosol inhibited Hsp90 ATPase activity and caused a rapid reduction in AhR levels. The formation of B[a]P-induced DNA adducts and mutagenesis was also inhibited by Zyflamend and carnosol. Collectively, these results show that Zyflamend and carnosol inhibit Hsp90 ATPase leading to reduced levels of AhR, suppression of B[a]P-mediated induction of CYP1A1 and CYP1B1, and inhibition of mutagenesis. Carnosol-mediated inhibition of Hsp90 ATPase activity can help explain the chemopreventive activity of herbs such as Rosemary, which contain this phenolic antioxidant.


Assuntos
Abietanos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA , Mutagênese , Extratos Vegetais/farmacologia , Receptores de Hidrocarboneto Arílico/química , Transcrição Gênica , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Benzo(a)pireno/química , Linhagem Celular Tumoral , Citocromo P-450 CYP1B1 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligantes
17.
Environ Mol Mutagen ; 52(6): 502-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21538553

RESUMO

The effects of a nine month administration of dietary: (1) 3H-1,2-dithiole-3-thione (D3T), (2) N-acetylcysteine (NAC), (3) antioxidant vitamin mix, (vitamin C+E), (4) free radical scavenger, amifostine, and (5) calorie restriction, (CR), on mutagenesis and lipid peroxidation in lung, kidney, spleen and liver of lacZ transgenic mice were examined. These agents/diets were chosen because they might inhibit certain proposed mechanisms of endogenous damage to DNA. The agents were added to a high fat, reduced antioxidant AIN-76 diet, to better approximate a Western style diet than the conventional AIN-76 diet. As the lacZ gene is not expressed, mutations in that gene are neutral, and simply accumulate over time. The mutant fractions in control mice increased about 50-100%. Most of the agents inhibited to various extents the age-related increase in mutagenesis in lung, kidney, and/or spleen, but no inhibition was observed in liver. There was no significant effect of age on lipid peroxidation levels in controls, possibly reflecting steady state turnover of lipid peroxidation products. Almost all of the treatments except D3T inhibited lipid peroxidation in most organs to different degrees. The vitamin C+E mix was the most effective at inhibiting lipid peroxidation, but a single most effective inhibitor of mutagenesis could not be discerned. Some associations were observed between the reduction in lipid peroxidation and the inhibition of mutagenesis. The results are consistent with a partial role for oxidative stress in the age-related increase in mutagenesis. These observations may have implications for chemoprevention of carcinogenesis.


Assuntos
Peroxidação de Lipídeos/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Animais , Ácido Ascórbico/farmacologia , Restrição Calórica , Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Baço/efeitos dos fármacos , Baço/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitamina E/farmacologia
18.
Food Chem Toxicol ; 49(9): 2348-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21722697

RESUMO

The ability of tobacco smoke (TS) to modulate phase I and II enzymes and affect metabolism of tobacco carcinogens is likely an important factor in its carcinogenicity. For the first time several types of TS particulates (TSP) were compared in different primary cultured human oral epithelial cells (NOE) for their abilities to affect metabolism of the tobacco carcinogen, (BaP) to genotoxic products, and expression of drug metabolizing enzymes. TSP from, reference filtered (2RF4), mentholated (MS), reference unfiltered, (IR3), ultra low tar (UL), and cigarettes that primarily heat tobacco (ECL) were tested. Cells pretreated with TSP concentrations of 0.2-10 µg/ml generally showed increased rates of BaP metabolism; those treated with TSP concentrations above 10 µg/ml showed decreased rates. Effects of TSPs were similar when expressed on a weight basis. Weights of TSP/cigarette varied in the order: MS≈IR3>2RF4>ECL>UL. All TSPs induced the phase I proteins, cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1), phase II proteins, NAD(P)H dehydrogenase quinone 1 (NQO1), and microsomal glutathione S-transferase 1 (MGST1), and additionally, hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2), as assessed by qRT-PCR. The pattern of gene induction at probable physiological levels favored activation over detoxification.


Assuntos
Benzo(a)pireno/metabolismo , Mucosa Bucal/efeitos dos fármacos , Nicotiana , Células Cultivadas , Adutos de DNA , Regulação da Expressão Gênica , Humanos , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Reação em Cadeia da Polimerase
19.
Chem Res Toxicol ; 19(3): 475-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16544955

RESUMO

Estrogens are hypothesized to contribute to breast cancer via estrogen receptor-mediated increases in cell proliferation and via genotoxic processes leading to mutations. In this latter process, estradiol (E(2)) is thought to be oxidized to 4-hydroxyestradiol and then to E(2)-3,4-quinone, which reacts with DNA leading to apurinic sites. These sites represent premutagenic lesions. Additionally, E(2)-3,4-quinone can undergo redox cycling with E(2)-3,4-hydroquinone, leading to the release of reactive oxygen species. Although there is evidence that estradiol and E(2)-3,4-quinone are carcinogenic or mutagenic in several systems, 4-hydroxyestradiol, a key intermediate in the proposed genotoxic pathway, has thus far been negative in mutagenesis assays. Another major metabolite of estradiol, 2-hydroxyestradiol, is essentially inactive in carcinogenicity or mutagenicity assays. Here, we report that when using multiple low-dose exposures 4-hydroxyestradiol is mutagenic in the cII assay in BB rat2 cells. Under similar conditions, 2-hydroxyestradiol is inactive. Furthermore, the mutational spectrum of 4-hydroxyestradiol contains a considerable proportion of mutations at A:T base pairs, consistent with the known ability of E(2)-3,4-quinone to form a significant fraction of DNA adducts at adenines. Thus, the results of this study support the proposal that estradiol can contribute to carcinogenesis via a genotoxic pathway.


Assuntos
Estradiol/análogos & derivados , Mutagênicos , Animais , Catecóis/química , DNA/biossíntese , DNA/genética , Relação Dose-Resposta a Droga , Embrião de Mamíferos/citologia , Estradiol/toxicidade , Estrogênios de Catecol , Indicadores e Reagentes , Mutagênese , Ratos , Ratos Endogâmicos BB , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Carcinogenesis ; 25(4): 637-43, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14656939

RESUMO

We determined the mutant fractions (MF) and mutational specificities in the cII gene in histologically confirmed normal, non-involved and tumor mammary tissues of female transgenic (Big Blue F344 x Sprague-Dawley)F1 rats treated with the environmental pollutant 6-nitrochrysene (6-NC). At 30 days of age, three groups were set up for oral treatment with 6-NC dissolved in trioctanoin, or trioctanoin alone once a week for 8 weeks. Two dose levels of 6-NC (100 and 200 micromol/rat) were selected on the basis of our previous carcinogenicity bioassays with CD rats. The rats were decapitated 32 weeks after the last carcinogen dose. Both incidence and multiplicity of mammary adenocarcinomas were significantly elevated in the high dose (36%, 0.57, P < 0.01) group but at the low dose these outcomes (16%, 0.23, P < 0.1) were not significantly different from those of control rats (3%, 0.03). The MF in normal, non-involved and tumor tissues from the mammary glands of 6-NC-treated rats were comparable. At the high and low doses, respectively (4.8 +/- 2.0, 3.2 +/- 2.1) the MF of 6-NC-treated rats, were significantly higher (P < 0.05) than that observed in control rats (1.2 +/- 0.6). Control mutants consisted primarily of GC --> AT transitions, whereas 6-NC-induced mutants were comprised of several major classes of mutations with GC --> TA, GC --> CG, AT --> GC and AT --> TA as the most prevalent. Further studies indicated that the structures of 6-NC-DNA adducts in the mammary tissue are consistent with the mutational specificities. This is the first report that defines the relationship between carcinogenesis and mutagenesis, as well as between structures of 6-NC-DNA adducts and mutation characteristics in the target organ in vivo.


Assuntos
Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Crisenos/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/genética , Fatores de Transcrição/genética , Adenoma/induzido quimicamente , Adenoma/genética , Administração Oral , Animais , Animais Geneticamente Modificados , Crisenos/administração & dosagem , Adutos de DNA/análise , Feminino , Fibroadenoma/induzido quimicamente , Fibroadenoma/genética , Mutação de Sentido Incorreto , Mutação Puntual , Ratos , Ratos Endogâmicos F344 , Valores de Referência , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa